We provide a detailed description of a new symmetry structure of the monomial
(Slater) expansion coefficients of bosonic (fermionic) fractional quantum Hall
states first obtained in Ref. 1, which we now extend to spin-singlet states. We
show that the Haldane-Rezayi spin-singlet state can be obtained without exact
diagonalization through a differential equation method that we conjecture to be
generic to other FQH model states. The symmetry rules in Ref. 1 as well as the
ones we obtain for the spin singlet states allow us to build approximations of
FQH states that exhibit increasing overlap with the exact state (as a function
of system size). We show that these overlaps reach unity in the thermodynamic
limit even though our approximation omits more than half of the Hilbert space.
We show that the product rule is valid for any FQH state which can be written
as an expectation value of parafermionic operators.Comment: 22 pages, 8 figure