447 research outputs found
The High Voltage Feedthroughs for the ATLAS Liquid Argon Calorimeters
The purpose, design specifications, construction techniques, and testing
methods are described for the high voltage feedthrough ports and filters of the
ATLAS Liquid Argon calorimeters. These feedthroughs carry about 5000 high
voltage wires from a room-temperature environment (300 K) through the cryostat
walls to the calorimeters cells (89 K) while maintaining the electrical and
cryogenic integrity of the system. The feedthrough wiring and filters operate
at a maximum high voltage of 2.5 kV without danger of degradation by corona
discharges or radiation at the Large Hadron Collider
Allocating the Burdens of Climate Action: Consumption-Based Carbon Accounting and the Polluter-Pays Principle
Action must be taken to combat climate change. Yet, how the costs of climate action should be allocated among states remains a question. One popular answer—the polluter-pays principle (PPP)—stipulates that those responsible for causing the problem should pay to address it. While intuitively plausible, the PPP has been subjected to withering criticism in recent years. It is timely, following the Paris Agreement, to develop a new version: one that does not focus on historical production-based emissions but rather allocates climate burdens in proportion to each state’s annual consumption-based emissions. This change in carbon accounting results in a fairer and more environmentally effective principle for distributing climate duties
Thermal Infrared MMTAO Observations of the HR 8799 Planetary System
We present direct imaging observations at wavelengths of 3.3, 3.8 (L',band),
and 4.8 (M band) microns, for the planetary system surrounding HR 8799. All
three planets are detected at L'. The c and d component are detected at 3.3
microns, and upper limits are derived from the M band observations. These
observations provide useful constraints on warm giant planet atmospheres. We
discuss the current age constraints on the HR 8799 system, and show that
several potential co-eval objects can be excluded from being co-moving with the
star. Comparison of the photometry is made to models for giant planet
atmospheres. Models which include non-equilibrium chemistry provide a
reasonable match to the colors of c and d. From the observed colors in the
thermal infrared we estimate T_eff < 960 K for b, and T_eff=1300 and 1170 K for
c and d, respectively. This provides an independent check on the effective
temperatures and thus masses of the objects from the Marois 2008 results.Comment: 16 pages, 6 figures, accepted to Ap
FAAST: Flow-space Assisted Alignment Search Tool
<p>Abstract</p> <p>Background</p> <p>High throughput pyrosequencing (454 sequencing) is the major sequencing platform for producing long read high throughput data. While most other sequencing techniques produce reading errors mainly comparable with substitutions, pyrosequencing produce errors mainly comparable with gaps. These errors are less efficiently detected by most conventional alignment programs and may produce inaccurate alignments.</p> <p>Results</p> <p>We suggest a novel algorithm for calculating the optimal local alignment which utilises flowpeak information in order to improve alignment accuracy. Flowpeak information can be retained from a 454 sequencing run through interpretation of the binary SFF-file format. This novel algorithm has been implemented in a program named FAAST (Flow-space Assisted Alignment Search Tool).</p> <p>Conclusions</p> <p>We present and discuss the results of simulations that show that FAAST, through the use of the novel algorithm, can gain several percentage points of accuracy compared to Smith-Waterman-Gotoh alignments, depending on the 454 data quality. Furthermore, through an efficient multi-thread aware implementation, FAAST is able to perform these high quality alignments at high speed.</p> <p>The tool is available at <url>http://www.ifm.liu.se/bioinfo/</url></p
FAAST: Flow-space Assisted Alignment Search Tool
<p>Abstract</p> <p>Background</p> <p>High throughput pyrosequencing (454 sequencing) is the major sequencing platform for producing long read high throughput data. While most other sequencing techniques produce reading errors mainly comparable with substitutions, pyrosequencing produce errors mainly comparable with gaps. These errors are less efficiently detected by most conventional alignment programs and may produce inaccurate alignments.</p> <p>Results</p> <p>We suggest a novel algorithm for calculating the optimal local alignment which utilises flowpeak information in order to improve alignment accuracy. Flowpeak information can be retained from a 454 sequencing run through interpretation of the binary SFF-file format. This novel algorithm has been implemented in a program named FAAST (Flow-space Assisted Alignment Search Tool).</p> <p>Conclusions</p> <p>We present and discuss the results of simulations that show that FAAST, through the use of the novel algorithm, can gain several percentage points of accuracy compared to Smith-Waterman-Gotoh alignments, depending on the 454 data quality. Furthermore, through an efficient multi-thread aware implementation, FAAST is able to perform these high quality alignments at high speed.</p> <p>The tool is available at <url>http://www.ifm.liu.se/bioinfo/</url></p
High Spatial Resolution Studies of Epithermal Neutron Emission from the Lunar Poles: Constraints on Hydrogen Mobility
The data from the collimated sensors of the LEND instrument are shown to be of exceptionally high quality. Counting uncertainties are about 0.3% relative and are shown to be the only significant source of random error, thus conclusions based on small differences in count rates are valid. By comparison with the topography of Shoemaker crater, the spatial resolution of the instrument is shown to be consistent with the design value of 5 km for the radius of the circle over which half the counts from the lunar surface would be determined. The observed epithermal-neutron suppression factor due to the hydrogen deposit in Shoemaker crater of 0.25 plus or minus 0.04 cps is consistent with the collimated field-of-view rate of 1.7 cps estimated by Mitrofanov et al. (2010a). The statistical significance of the neutron suppressed regions (NSRs) relative to the larger surrounding polar region is demonstrated, and it is shown that they are not closely related to the permanently shadowed regions. There is a significant increase in H content in the polar regions independent of the H content of the NSRs. The non-NSR H content increases directly with latitude, and the rate of increase is virtually identical at both poles. There is little or no increase with latitude outside the polar region. Various mechanisms to explain this steep increase in the non-NSR polar H with latitude are investigated, and it is suggested that thermal volatilization is responsible for the increase because it is minimized at the low surface temperatures close to the poles
Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution
The larger number of models of asteroid shapes and their rotational states
derived by the lightcurve inversion give us better insight into both the nature
of individual objects and the whole asteroid population. With a larger
statistical sample we can study the physical properties of asteroid
populations, such as main-belt asteroids or individual asteroid families, in
more detail. Shape models can also be used in combination with other types of
observational data (IR, adaptive optics images, stellar occultations), e.g., to
determine sizes and thermal properties. We use all available photometric data
of asteroids to derive their physical models by the lightcurve inversion method
and compare the observed pole latitude distributions of all asteroids with
known convex shape models with the simulated pole latitude distributions. We
used classical dense photometric lightcurves from several sources and
sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff,
Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the
lightcurve inversion method to determine asteroid convex models and their
rotational states. We also extended a simple dynamical model for the spin
evolution of asteroids used in our previous paper. We present 119 new asteroid
models derived from combined dense and sparse-in-time photometry. We discuss
the reliability of asteroid shape models derived only from Catalina Sky Survey
data (IAU code 703) and present 20 such models. By using different values for a
scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in
the dynamical model for the spin evolution and by comparing synthetics and
observed pole-latitude distributions, we were able to constrain the typical
values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201
Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars
The Kepler space mission provided near-continuous and high-precision photometry of about 207 000 stars, which can be used for asteroseismology. However, for successful seismic modeling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe i, and Fe ii lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and λ Boo types. The distribution of the projected rotational velocity, vsin i, is typical for A and F stars and ranges from 8 to about 280 km s−1, with a mean of 134 km s−1
Kepler observations of variability in B-type stars
The analysis of the light curves of 48 B-type stars observed by Kepler is
presented. Among these are 15 pulsating stars, all of which show low
frequencies characteristic of SPB stars. Seven of these stars also show a few
weak, isolated high frequencies and they could be considered as SPB/beta Cep
hybrids. In all cases the frequency spectra are quite different from what is
seen from ground-based observations. We suggest that this is because most of
the low frequencies are modes of high degree which are predicted to be unstable
in models of mid-B stars. We find that there are non-pulsating stars within the
beta Cep and SPB instability strips. Apart from the pulsating stars, we can
identify stars with frequency groupings similar to what is seen in Be stars but
which are not Be stars. The origin of the groupings is not clear, but may be
related to rotation. We find periodic variations in other stars which we
attribute to proximity effects in binary systems or possibly rotational
modulation. We find no evidence for pulsating stars between the cool edge of
the SPB and the hot edge of the delta Sct instability strips. None of the stars
show the broad features which can be attributed to stochastically-excited modes
as recently proposed. Among our sample of B stars are two chemically peculiar
stars, one of which is a HgMn star showing rotational modulation in the light
curve.Comment: 19 pages, 11 figures, 4 table
- …