2,313 research outputs found

    Effective time-independent description of optical lattices with periodic driving

    Full text link
    For a periodically driven quantum system an effective time-independent Hamiltonian is derived with an eigen-energy spectrum, which in the regime of large driving frequencies approximates the quasi-energies of the corresponding Floquet Hamiltonian. The effective Hamiltonian is evaluated for the case of optical lattice models in the tight-binding regime subjected to strong periodic driving. Three scenarios are considered: a periodically shifted one-dimensional (1D) lattice, a two-dimensional (2D) square lattice with inversely phased temporal modulation of the well depths of adjacent lattice sites, and a 2D lattice subjected to an array of microscopic rotors commensurate with its plaquette structure. In case of the 1D scenario the rescaling of the tunneling energy, previously considered by Eckardt et al. in Phys. Rev. Lett. 95, 260404 (2005), is reproduced. The 2D lattice with well depth modulation turns out as a generalization of the 1D case. In the 2D case with staggered rotation, the expression previously found in the case of weak driving by Lim et al. in Phys. Rev. Lett. 100, 130402 (2008) is generalized, such that its interpretation in terms of an artificial staggered magnetic field can be extended into the regime of strong driving.Comment: 10 pages, 5 figure

    Hierarchical Beamforming: Resource Allocation, Fairness and Flow Level Performance

    Full text link
    We consider hierarchical beamforming in wireless networks. For a given population of flows, we propose computationally efficient algorithms for fair rate allocation including proportional fairness and max-min fairness. We next propose closed-form formulas for flow level performance, for both elastic (with either proportional fairness and max-min fairness) and streaming traffic. We further assess the performance of hierarchical beamforming using numerical experiments. Since the proposed solutions have low complexity compared to conventional beamforming, our work suggests that hierarchical beamforming is a promising candidate for the implementation of beamforming in future cellular networks.Comment: 34 page

    Observation of Floquet-Bloch states on the surface of a topological insulator

    Get PDF
    The unique electronic properties of the surface electrons in a topological insulator are protected by time-reversal symmetry. Circularly polarized light naturally breaks time-reversal symmetry, which may lead to an exotic surface quantum Hall state. Using time- and angle-resolved photoemission spectroscopy, we show that an intense ultrashort mid-infrared pulse with energy below the bulk band gap hybridizes with the surface Dirac fermions of a topological insulator to form Floquet-Bloch bands. These photon dressed surface bands exhibit polarization-dependent band gaps at avoided crossings. Circularly polarized photons induce an additional gap at the Dirac point, which is a signature of broken time-reversal symmetry on the surface. These observations establish the Floquet-Bloch bands in solids and pave the way for optical manipulation of topological quantum states of matter.Comment: 23 pages including supplementary material

    Discrete-time output feedback sliding-mode control design for uncertain systems using linear matrix inequalities

    Get PDF
    An output feedback-based sliding-mode control design methodology for discrete-time systems is considered in this article. In previous work, it has been shown that by identifying a minimal set of current and past outputs, an augmented system can be obtained which permits the design of a sliding surface based upon output information only, if the invariant zeros of this augmented system are stable. In this work, a procedure for realising discrete-time controllers via a particular set of extended outputs is presented for non-square systems with uncertainties. This method is applicable when unstable invariant zeros are present in the original system. The conditions for existence of a sliding manifold guaranteeing a stable sliding motion are given. A procedure to obtain a Lyapunov matrix, which simultaneously satisfies both a Riccati inequality and a structural constraint, is used to formulate the corresponding control to solve the reachability problem. A numerical method using linear matrix inequalities is suggested to obtain the Lyapunov matrix. Finally, the design approach given in this article is applied to an aircraft problem and the use of the method as a reconfigurable control strategy in the presence of sensor failure is demonstrated

    Resampling technique applied to the characterization of microsegregation

    Get PDF
    Characterization of short-range chemical heterogeneities in metallic materials, such as the so-called microsegregation resulting from solidification, is most often performed using EDS or WDS spot measurements. The most usual way is to perform countings on points located along a regular grid. Due to experimental limitation, the grid step is generally of the same order of magnitude than the characteristic distance(s) of the chemical heterogeneities under investigation. In such a case, the measurements can not be assumed to be independent one from each other, and the resulting interferences (correlations) preclude application of simple statistics to the solute distribution obtained. In the present work, this is clearly shown by using a resampling technique applied to "chemical" images obtained by phase field modelling

    Analyse qualitative des rĂ©ponses Ă©pilinguistiques et mĂ©talinguistiques au test d’acceptabilitĂ© du THAM-3 par des Ă©tudiants italophones

    Get PDF
    ABSTRACT. Qualitative analysis of epilinguistic and metalinguistic answers to the THAM‐3 acceptability test by Italian‐speaking students. This article as two aims, methodological and descriptive. It analyses the grammatical and metalinguistic judgements of a group of italians learning French (19 adults) elicitated from the acceptability task of the THAM 3, a linguistic and metalinguistic tests conceived for native speakers. The goal is to show that some difficulties are due to the structure of these acceptabili ty tasks that influences langu

    The spectrum of the B[e] star BAL224

    Get PDF
    We present optical spectroscopy of the emission line star BAL 224 (V=17.3, B-V=0.46). This star also named KWBBE 485, [MA93]906 is located at the periphery of the young SMC cluster NGC 330; it is known as a photometric variable with a possible period around 1 day (Balona 1992). Furthermore it was reported as the optical counterpart of the prominent mid-infrared source (MIR1) by Kucinskas et al. (2000), indicating the presence of a dust shell. The star was included in a sample of B-type stars observed using the ESO VLT-FLAMES facilities. The presence of emission lines such as Fe II,[Fe II], [S II] make this object like a B[e] star. The Halpha alpha, Hgamma gamma and Hdelta delta lines show an asymmetrical double-peaked emission profile suggesting the presence of an accretion disk. Moreover the MACHO and OGLE light curves were analyzed; in addition to a long-term variability (simeq simeq 2300d), a short period very close to 1 day has been detected using different methods, confirming the variability previously reported by Balona (1992). Finally the nature of this object is reconsidered.Comment: 4 page

    Large Amplitude Harmonic Driving of Highly Coherent Flux Qubits

    Full text link
    The device for the Josephson flux qubit (DJFQ) can be considered as a solid state artificial atom with multiple energy levels. When a large amplitude harmonic excitation is applied to the system, transitions at the energy levels avoided crossings produce visible changes in the qubit population over many driven periods that are accompanied by a rich pattern of interference phenomena. We present a Floquet treatment of the periodically time-dependent Schr\"odinger equation of the strongly driven qubit beyond the standard two levels approach. For low amplitudes, the average probability of a given sign of the persistent current qubit exhibits, as a function of the static flux detuning and the driving amplitude, Landau-Zener-St\"uckelberg interference patterns that evolve into complex diamond-like patterns for large amplitudes. In the case of highly coherent flux qubits we find that the higher order diamonds can not be simply described relying on a two-level approximations. In addition we propose a new spectroscopic method based on starting the system in the first excited state instead of in the ground state, which can give further information on the energy level spectrum and dynamics in the case of highly coherent flux qubits. We compare our numerical results with recent experiments that perform amplitude spectroscopy to probe the energy spectrum of the artificial atom.Comment: 12 Pages and 12 Figures Phys. Rev. B (in press

    Le fricative dentali e alveo-palatali in francese e in italiano: differenze fonologiche e ricadute acquisizionali

    Get PDF
    French dental and palatal fricatives are not considered as a problem for italian students because of the similarity of the two phonological systems. In this study, we try to show that, instead of this current opinion, the different phonological value of [s], [z], [∫] and [ʒ] in italian can explain some acquisitional errors such as “position” [pozisjõ] > [posisjõ] or “mesure” [məzyR] > [mə∫yR], [məʒyR]
    • 

    corecore