12 research outputs found

    Adults with RRM2B-related mitochondrial disease have distinct clinical and molecular characteristics.

    Get PDF
    Mutations in the nuclear-encoded mitochondrial maintenance gene RRM2B are an important cause of familial mitochondrial disease in both adults and children and represent the third most common cause of multiple mitochondrial DNA deletions in adults, following POLG [polymerase (DNA directed), gamma] and PEO1 (now called C10ORF2, encoding the Twinkle helicase) mutations. However, the clinico-pathological and molecular features of adults with RRM2B-related disease have not been clearly defined. In this multicentre study of 26 adult patients from 22 independent families, including five additional cases published in the literature, we show that extra-ocular neurological complications are common in adults with genetically confirmed RRM2B mutations. We also demonstrate a clear correlation between the clinical phenotype and the underlying genetic defect. Myopathy was a prominent manifestation, followed by bulbar dysfunction and fatigue. Sensorineural hearing loss and gastrointestinal disturbance were also important findings. Severe multisystem neurological disease was associated with recessively inherited compound heterozygous mutations with a mean age of disease onset at 7 years. Dominantly inherited heterozygous mutations were associated with a milder predominantly myopathic phenotype with a later mean age of disease onset at 46 years. Skeletal muscle biopsies revealed subsarcolemmal accumulation of mitochondria and/or cytochrome c oxidase-deficient fibres. Multiple mitochondrial DNA deletions were universally present in patients who underwent a muscle biopsy. We identified 18 different heterozygous RRM2B mutations within our cohort of patients, including five novel mutations that have not previously been reported. Despite marked clinical overlap between the mitochondrial maintenance genes, key clinical features such as bulbar dysfunction, hearing loss and gastrointestinal disturbance should help prioritize genetic testing towards RRM2B analysis, and sequencing of the gene may preclude performance of a muscle biopsy

    Mutant POLG2 Disrupts DNA Polymerase γ Subunits and Causes Progressive External Ophthalmoplegia

    Get PDF
    DNA polymerase γ (pol γ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol γ (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G→A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol γ, that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)–deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype

    Concentric hypertrophic remodelling and subendocardial dysfunction in mitochondrial DNA point mutation carriers

    Get PDF
    AIMS: Hypertrophic remodelling and systolic dysfunction are common in patients with mitochondrial disease and independent predictors of morbidity and early mortality. Screening strategies for cardiac disease are unclear. We investigated whether myocardial abnormalities could be identified in mitochondrial DNA mutation carriers without clinical cardiac involvement. METHODS AND RESULTS: Cardiac magnetic resonance imaging was performed in 22 adult patients with mitochondrial disease due to the m.3243A>G mutation, but no known cardiac involvement, and 22 age- and gender-matched control subjects: (i) Phosphorus-31- magnetic resonance spectroscopy, (ii) cine imaging (iii), cardiac tagging and (iv) late gadolinium enhancement (LGE) imaging. Disease burden was determined using the Newcastle Mitochondrial Disease Adult Scale (NMDAS) and urinary mutation load. Compared with control subjects, patients had an increased left ventricular mass index (LVMI), LV mass to end-diastolic volume (M/V) ratio, wall thicknesses (all P < 0.01), torsion and torsion to endocardial strain ratio (both P < 0.05). Longitudinal shortening was decreased in patients (P < 0.0001) and correlated with an increased LVMI (r = −0.52, P < 0.03), but there were no differences in the diastolic function. Among patients there was no correlation of LVMI or the M/V ratio with diabetic or hypertensive status, but the mutation load and NMDAS correlated with the LVMI (r = 0.71 and r = 0.79, respectively, both P < 0.001). The phosphocreatine/adenosine triphosphate ratio was decreased in patients (P < 0.001) but did not correlate with other parameters. No patients displayed focal LGE. CONCLUSION: Concentric remodelling and subendocardial dysfunction occur in patients carrying m.3243A>G mutation without clinical cardiac disease. Patients with higher mutation loads and disease burden may be at increased risk of cardiac involvement

    Defining cardiac adaptations and safety of endurance training in patients with m.3243A&gt;G-related mitochondrial disease

    Get PDF
    BACKGROUND: Cardiac hypertrophic remodelling and systolic dysfunction are common in patients with mitochondrial disease and independent predictors of morbidity and early mortality. Endurance exercise training improves symptoms and skeletal muscle function, yet cardiac adaptations are unknown. METHODS AND RESULTS: Before and after 16-weeks of training, exercise capacity, cardiac magnetic resonance imaging and phosphorus-31 spectroscopy, disease burden, fatigue, quality of life, heart rate variability (HRV) and blood pressure variability (BPV) were assessed in 10 adult patients with m.3243A>G-related mitochondrial disease, and compared to age- and gender-matched sedentary control subjects. At baseline, patients had increased left ventricular mass index (LVMI, p < 0.05) and LV mass to end-diastolic volume ratio, and decreased longitudinal shortening and myocardial phosphocreatine/adenosine triphosphate ratio (all p < 0.01). Peak arterial–venous oxygen difference (p < 0.05), oxygen uptake (VO(2)) and power were decreased in patients (both p < 0.01) with no significant difference in cardiac power output. All patients remained stable and completed ≥ 80% sessions. With training, there were similar proportional increases in peak VO(2), anaerobic threshold and work capacity in patients and controls. LVMI increased in both groups (p < 0.01), with no significant effect on myocardial function or bioenergetics. Pre- and post-exercise training, HRV and BPV demonstrated increased low frequency and decreased high frequency components in patients compared to controls (all p < 0.05). CONCLUSION: Patients with mitochondrial disease and controls achieved similar proportional benefits of exercise training, without evidence of disease progression, or deleterious effects on cardiac function. Reduced exercise capacity is largely mediated through skeletal muscle dysfunction at baseline and sympathetic over-activation may be important in pathogenesis

    Mechanisms of Field Cancerization in the Human Stomach: The Expansion and Spread of Mutated Gastric Stem Cells

    No full text
    Background & Aims: How mutations are established and spread through the human stomach is unclear because the clonal structure of gastric mucosal units is unknown. Here we investigate, using mitochondrial DNA (mtDNA) mutations as a marker of clonal expansion, the clonality of the gastric unit and show how mutations expand in normal mucosa and gastric mucosa showing intestinal metaplasia. This has important implications in gastric carcinogenesis. Methods: Mutated units were identified by a histochemical method to detect activity of cytochrome c oxidase. Negative units were laser-capture microdissected, and mutations were identified by polymerase chain reaction sequencing. Differentiated epithelial cells were identified by immunohistochemistry for lineage markers. Results: We show that mtDNA mutations establish themselves in stem cells within normal human gastric body units, and are passed on to all their differentiated progeny, thereby providing evidence for clonal conversion to a new stem cell–derived unit—monoclonal conversion, encompassing all gastric epithelial lineages. The presence of partially mutated units indicates that more than one stem cell is present in each unit. Mutated units can divide by fission to form patches, with each unit sharing an indentical, mutant mtDNA genotype. Furthermore, we show that intestinal metaplastic crypts are clonal, possess multiple stem cells, and that fission is a mechanism by which intestinal metaplasia spreads. Conclusions: These data show that human gastric body units are clonal, contain multiple multipotential stem cells, and provide definitive evidence for how mutations spread within the human stomach, and show how field cancerization develops

    Species Taxonomy, Phylogeny, and Biogeography of the Brontotheriidae (Mammalia: Perissodactyla)

    No full text
    corecore