321 research outputs found
High gradient testing of an X-band crab cavity at XBOX2
CERN’s Compact linear collider (CLIC) will require crab cavities to align the bunches to provide effective head-on collisions. An X-band quasi-TM11 deflecting cavity has been designed and manufactured for testing at CERN’s Xbox-2 high power standalone test stand. The cavity is currently under test and has reached an input power level in excess of 40MW, with a measured breakdown rate of better than 10-5 breakdowns per pulse. This paper also describes surface field quantities which are important in assessing the expected BDR when designing high gradient structures
Pluto Integrated Camera-Spectrometer (PICS): A Low Mass, Low Power Instrument for Planetary Exploration
The concept we describe is an integrated instrument (a Pluto Integrated Camera Spectrometer, PICS) that will perform the functions of all three optical instruments required by the Pluto Fast Flyby Mission: the near-IR spectrometer, the camera, and the UV spectrometer. This integrated approach minimizes mass and power use. It also forced us early in the conceptual design to consider integrated observational sequences and integrated power management, thus ensuring compatible duty cycles (i.e. exposure times, readout rates) to meet the composite requirements for data collection, compression, and storage. Based on flight mission experience we believe that this integrated approach will result in substantial cost savings, both in reworking instrument designs during accommodation, as well as in sequence planning and integration. Finally, this integrated payload automatically yields a cohesive mission data set, optimized for correlative analysis. In our baseline concept, a single set of lightweight, multi-wavelength foreoptics is shared by an UV imaging spectrometer (160 spectral channels 10-150 nm), a two-CCD visible imaging system (simultaneously shuttered in two colors 300-500 nm and 500-1000 nm), and a near-IR imaging spectrometer (256 spectral channels 1300-2600 nm), The entire structure and optics is built from SiC, and includes an integrated radiator for thermal control. The design has no moving parts and each spectrometer covers a single octave in wavelength. For the Pluto mission, a separate port (aligned in a direction compatible with the radio occultation experiment) is provided for PICS measurement of a UV solar occultation and for spectral radiance calibration of the IR and visible subsystems. The integrated science this instrument will yield meets or exceeds all of the Priority-1A science objectives and captures many Priority-1B science objectives as well. The presentation will provide details of the PICS instrument design and describe the fabrication and testing of the integrated SiC structure and optics at SSG Inc. Final integration and test plans for the prototype will also be described
Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*
We report results from very long baseline interferometric (VLBI) observations
of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230
GHz). The observations were performed in 2013 March using six VLBI stations in
Hawaii, California, Arizona, and Chile. Compared to earlier observations, the
addition of the APEX telescope in Chile almost doubles the longest baseline
length in the array, provides additional {\it uv} coverage in the N-S
direction, and leads to a spatial resolution of 30 as (3
Schwarzschild radii) for Sgr A*. The source is detected even at the longest
baselines with visibility amplitudes of 4-13% of the total flux density.
We argue that such flux densities cannot result from interstellar refractive
scattering alone, but indicate the presence of compact intrinsic source
structure on scales of 3 Schwarzschild radii. The measured nonzero
closure phases rule out point-symmetric emission. We discuss our results in the
context of simple geometric models that capture the basic characteristics and
brightness distributions of disk- and jet-dominated models and show that both
can reproduce the observed data. Common to these models are the brightness
asymmetry, the orientation, and characteristic sizes, which are comparable to
the expected size of the black hole shadow. Future 1.3 mm VLBI observations
with an expanded array and better sensitivity will allow a more detailed
imaging of the horizon-scale structure and bear the potential for a deep
insight into the physical processes at the black hole boundary.Comment: 11 pages, 5 figures, accepted to Ap
Long-Term Soil Structure Observatory for Monitoring Post-Compaction Evolution of Soil Structure
The projected intensification of agriculture to meet food targets of a rapidly growing world population are likely to accentuate already acute problems of soil compaction and deteriorating soil structure in many regions of the world.
The key role of soil structure for soil functions, the sensitivity of soil structure to agronomic management practices, and the lack of reliable observations and metrics for soil structure recovery rates after compaction motivated the establishment of a long-term Soil Structure Observatory (SSO) at the Agroscope research institute in Zürich, Switzerland. The primary objective of the SSO is to provide long-term observation data on soil structure evolution after disturbance by compaction, enabling quantification of compaction recovery rates and times. The SSO was designed to provide information on recovery of compacted soil under different post-compaction soil management regimes, including natural recovery of bare and vegetated soil as well as recovery with and without soil tillage. This study focused on the design of the SSO and the characterization of the pre- and post-compaction state of the field. We deployed a monitoring network for continuous observation of soil state variables related to hydrologic and biophysical functions (soil water content, matric potential, temperature, soil air O2 and CO2 concentrations, O2 diffusion rates, and redox states) as well as periodic sampling and in situ measurements of infiltration, mechanical impedance, soil porosity, gas and water transport properties, crop yields, earthworm populations,
and plot-scale geophysical measurements. Besides enabling quantification of recovery rates of compacted soil, we expect that data provided by the SSO will help improve our general understanding of soil structure dynamics
Reversible and irreversible root phenotypic plasticity under fluctuating soil physical conditions
Roots grow in a highly heterogeneous physical environment due to the spatial complexity of soil structure. Thereby, the root growth zone repeatedly experiences soil physical stress such as hypoxia or increased penetration resistance. To mimic the highly variable physical environment surrounding the root growth zone, we subjected pea and wheat seedlings to periodic soil physical stress. One day of soil hypoxia or increased penetration resistance reduced root elongation rate of both species by at least 20 %. Upon stress release, root elongation rate of pea could recover within one day, while no such recovery occurred in wheat. Similarly, the diameter of the root elongation zone in pea increased by 15 % and 20 % due to hypoxia and increased penetration resistance, respectively, but decreased again once the stresses were released. In contrast, the diameter of the elongation zone of wheat roots started to decrease with the onset of soil physical stress and this trend continued upon stress release. Hence, root responses to short-term soil physical stress were reversible in pea and irreversible in wheat, indicating reversible and irreversible root phenotypic plasticity, respectively. This suggests that strategies to cope with periodic soil physical stress may vary among species. The differentiation between reversible and irreversible phenotypic plasticity is crucial to advance our understanding on soil exploration, resource acquisition, whole plant growth, and ultimately crop yield formation on structured soil
Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope
The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of ∼40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin
Pooled analysis of iron-related genes in Parkinson's disease: Association with transferrin
Pathologic features of Parkinson's disease (PD) include death of dopaminergic neurons in the substantia nigra, presence of α-synuclein containing Lewy bodies, and iron accumulation in PD-related brain regions. The observed iron accumulation may be contributing to PD etiology but it also may be a byproduct of cell death or cellular dysfunction. To elucidate the possible role of iron accumulation in PD, we investigated genetic variation in 16 genes related to iron homeostasis in three case-control studies from the United States, Australia, and France. After screening 90 haplotype tagging single nucleotide polymorphisms (SNPs) within the genes of interest in the US study population, we investigated the five most promising gene regions in two additional independent case-control studies. For the pooled data set (1289 cases, 1391 controls) we observed a protective association (OR. = 0.83, 95% CI: 0.71-0.96) between PD and a haplotype composed of the A allele at rs1880669 and the T allele at rs1049296 in transferrin (TF; GeneID: 7018). Additionally, we observed a suggestive protective association (OR. = 0.87, 95% CI: 0.74-1.02) between PD and a haplotype composed of the G allele at rs10247962 and the A allele at rs4434553 in transferrin receptor 2 (TFR2; GeneID: 7036). We observed no associations in our pooled sample for haplotypes in SLC40A1, CYB561, or HFE. Taken together with previous findings in model systems, our results suggest that TF or a TF- TFR2 complex may have a role in the etiology of PD, possibly through iron misregulation or mitochondrial dysfunction within dopaminergic neurons
First M87 Event Horizon Telescope Results and the Role of ALMA
In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the
first image of the candidate super-massive black hole (SMBH) at the centre of
the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image
shows a ring of glowing plasma with a dark patch at the centre, which is
interpreted as the shadow of the black hole. This breakthrough result, which
represents a powerful confirmation of Einstein's theory of gravity, or general
relativity, was made possible by assembling a global network of radio
telescopes operating at millimetre wavelengths that for the first time included
the Atacama Large Millimeter/ submillimeter Array (ALMA). The addition of ALMA
as an anchor station has enabled a giant leap forward by increasing the
sensitivity limits of the EHT by an order of magnitude, effectively turning it
into an imaging array. The published image demonstrates that it is now possible
to directly study the event horizon shadows of SMBHs via electromagnetic
radiation, thereby transforming this elusive frontier from a mathematical
concept into an astrophysical reality. The expansion of the array over the next
few years will include new stations on different continents - and eventually
satellites in space. This will provide progressively sharper and
higher-fidelity images of SMBH candidates, and potentially even movies of the
hot plasma orbiting around SMBHs. These improvements will shed light on the
processes of black hole accretion and jet formation on event-horizon scales,
thereby enabling more precise tests of general relativity in the truly strong
field regime.Comment: 11 pages + cover page, 6 figure
Phylogenetic diversity of Amazonian tree communities
This is the peer reviewed version of the following article: Honorio Coronado, E. N., Dexter, K. G., Pennington, R. T., Chave, J., Lewis, S. L., Alexiades, M. N., Alvarez, E., Alves de Oliveira, A., Amaral, I. L., Araujo-Murakami, A., Arets, E. J. M. M., Aymard, G. A., Baraloto, C., Bonal, D., Brienen, R., Cerón, C., Cornejo Valverde, F., Di Fiore, A., Farfan-Rios, W., Feldpausch, T. R., Higuchi, N., Huamantupa-Chuquimaco, I., Laurance, S. G., Laurance, W. F., López-Gonzalez, G., Marimon, B. S., Marimon-Junior, B. H., Monteagudo Mendoza, A., Neill, D., Palacios Cuenca, W., Peñuela Mora, M. C., Pitman, N. C. A., Prieto, A., Quesada, C. A., Ramirez Angulo, H., Rudas, A., Ruschel, A. R., Salinas Revilla, N., Salomão, R. P., Segalin de Andrade, A., Silman, M. R., Spironello, W., ter Steege, H., Terborgh, J., Toledo, M., Valenzuela Gamarra, L., Vieira, I. C. G., Vilanova Torre, E., Vos, V., Phillips, O. L. (2015), Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21: 1295–1307. doi: 10.1111/ddi.12357, which has been published in final form at 10.1111/ddi.12357Aim: To examine variation in the phylogenetic diversity (PD) of tree communities across geographical and environmental gradients in Amazonia. Location: Two hundred and eighty-three c. 1 ha forest inventory plots from across Amazonia. Methods: We evaluated PD as the total phylogenetic branch length across species in each plot (PDss), the mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardized for species richness (ses.PDss, ses.MPD, ses.MNTD). We compared PD of tree communities growing (1) on substrates of varying geological age; and (2) in environments with varying ecophysiological barriers to growth and survival. Results: PDss is strongly positively correlated with species richness (SR), whereas MNTD has a negative correlation. Communities on geologically young- and intermediate-aged substrates (western and central Amazonia respectively) have the highest SR, and therefore the highest PDss and the lowest MNTD. We find that the youngest and oldest substrates (the latter on the Brazilian and Guiana Shields) have the highest ses.PDss and ses.MNTD. MPD and ses.MPD are strongly correlated with how evenly taxa are distributed among the three principal angiosperm clades and are both highest in western Amazonia. Meanwhile, seasonally dry tropical forest (SDTF) and forests on white sands have low PD, as evaluated by any metric. Main conclusions: High ses.PDss and ses.MNTD reflect greater lineage diversity in communities. We suggest that high ses.PDss and ses.MNTD in western Amazonia results from its favourable, easy-to-colonize environment, whereas high values in the Brazilian and Guianan Shields may be due to accumulation of lineages over a longer period of time. White-sand forests and SDTF are dominated by close relatives from fewer lineages, perhaps reflecting ecophysiological barriers that are difficult to surmount evolutionarily. Because MPD and ses.MPD do not reflect lineage diversity per se, we suggest that PDss, ses.PDss and ses.MNTD may be the most useful diversity metrics for setting large-scale conservation priorities.FINCyT - PhD studentshipSchool of Geography of the University of LeedsRoyal Botanic Garden EdinburghNatural Environment Research Council (NERC)Gordon and Betty Moore FoundationEuropean Union's Seventh Framework ProgrammeERCCNPq/PELDNSF - Fellowshi
- …