26 research outputs found

    Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Testing molten metal oxide catalysts over structured ceramic substrates for diesel soot oxidation

    No full text
    Onboard tests of an oxide (CoOx) and a molten mixed oxide catalyst (CoPbOx) supported on cordierite wall flow filters (Coming Durotrap CO EX80) were performed on rollers with a 1.9-1 light duty vehicle for three different driving conditions including two constant speeds with different loadings and a standard European cycle (NEDC). The balance point temperatures obtained in these tests were used to compare the catalytic activity under onboard conditions with laboratory measurements. Onboard tests showed similar catalytic activities with the previous micro-reactor experiments performed in "loose contact" mode [D. Uner, M.K. Demirkol, B. Dernaika, Appl. Catal. 13: Environ., in press]. The concentration profiles of the active layer determined by SEM-EDX analysis after use and after aging revealed that the mobile component, PbOx, migrated in the flow direction and accumulated at the closed end of the channel. There is no direct evidence for the evaporative loss of PbOx. Regions of high activity indicated by low carbon amounts with unique Pb-Co ratios were determined by SEM analysis

    An unusual cause of hyponatremia: Ventricular drainage

    No full text
    corecore