1,085 research outputs found

    Photocatalytic and oxidative synthetic pathways for highly efficient PANI-TIO2 nanocomposites as organic and inorganic pollutant sorbents

    Get PDF
    Polyaniline (PANI)-materials have recently been proposed for environmental remediation applications thanks to PANI stability and sorption properties. As an alternative to conventional PANI oxidative syntheses, which involve toxic carcinogenic compounds, an eco-friendly procedure was here adopted starting from benign reactants (aniline-dimer and H2O2) and initiated by ultraviolet (UV)-irradiated TiO2. To unlock the full potential of this procedure, we investigated the roles of TiO2 and H2O2 in the nanocomposites synthesis, with the aim of tailoring the properties of the final material to the desired application. The nanocomposites prepared by varying the TiO2:H2O2:aniline-dimer molar ratios were characterized for their thermal, optical, morphological, structural and surface properties. The reaction mechanism was investigated via mass analyses and X-ray photoelectron spectroscopy. The nanocomposites were tested on both methyl orange and hexavalent chromium removal. A fast dye-sorption was achieved also in the presence of interferents and the recovery of the dye was obtained upon eco-friendly conditions. An efficient Cr(VI) abatement was obtained also after consecutive tests and without any regeneration treatment. The fine understanding of the reaction mechanism allowed us to interpret the pollutant-removal performances of the different materials, leading to tailored nanocomposites in terms of maximum sorption and reduction capability upon consecutive tests even in simulated drinking water

    Triply green polyaniline: UV irradiation-induced synthesis of highly porous PANI/TiO2 composite and its application in dye removal

    Get PDF
    An environmentally benign procedure for the preparation of polyaniline/TiO2 composites is presented. The UV irradiation-induced synthesis leads to materials with good crystallinity and tailored morphology, showing promising sorption and recycle properties in dye removal tests. A reaction mechanism is proposed on the basis of LC-MS and FT-IR investigations

    Polyaniline/TiO2 composites: green photocatalysic synthesis and application in wastewater remediation

    Get PDF
    In recent years, polyaniline (PANI) composites and nanocomposites with metal and metal-oxide materials have received growing attention for electrochemical and photoelectrochemical applications (Gu 2013). Among them, PANI/TiO2 composites are probably the most interesting systems due to synergistic effects between the conductive polymer and the oxide photocatalyst in terms of photogenerated charge separation and photocatalytic efficiency (Bae 2011). Moreover, polyaniline has been reported to possess favourable sorption properties, which can be exploited for pollutant remediation (Alcaraz-Espinoza 2015, Janaki 2012). PANI/TiO2 composites are thus promising candidates for wastewater treatment combining different pollutant remediation approaches. Polyaniline is classically synthesised via oxidative polymerization (Tran 2011), which involves noxious reagents (aniline and peroxydisulfates) and leads to toxic and carcinogenic byproducts (such as benzidine and trans-azobenzidine). In recent years, greener alternatives have been reported, such as a synthetic process starting from aniline dimer ((4-aminophenil)aniline) and using Fe3+ as catalyst and H2O2 as oxidant (Della Pina 2018). Unfortunately, this alternative procedure does not offer any control over the polymer morphology, leading to compact materials with low surface area and, as a consequence, poor dye-sorption capability. Very recently, we proposed a new photocatalytically induced green synthesis leading to stable polyaniline/TiO2 composites with porous morphology, wide surface area, high crystallinity and, most important, excellent dye removal performance and reusability (Cionti 2018). The reaction is carried out in two steps: at first, the aniline dimer is dissolved in a HCl aqueous solution and TiO2 is added while starting UV irradiation. In the second step, H2O2 is added in the dark, leading to the final product. In this work, we shed light on the photocatalytic nature of the synthetic mechanism, highlighting the different roles of TiO2 and of H2O2 on the composite structural and morphological features as well as on the composite performance for pollutant abatement. The reaction mechanism was investigated by a combination of spectrometric techniques, radical scavenger tests, and surface characterizations (Fig.1). By sampling the reaction mixture at different irradiation times, we demonstrated that under UV irradiation the growth of the oligomers occurs at the TiO2 particle surfaces. The same experiment carried out without UV irradiation showed the intrinsic photocatalytic nature of the process: in the dark, only short oligomers without appropriate chain conjugation were produced. However, even after prolonged UV irradiation, the final green product could be obtained only upon addition of H2O2, showing that, while oligomer formation is initiated by radicals produced by TiO2 photocatalysis, small amounts of an oxidant (H2O2) are still needed for the polymer chain growth. The role of the H2O2 amount proved to be especially crucial with respect to the composite properties. Increasing the H2O2 amount together with that of TiO2 led to composites with low surface area and reduced dye removal capability (Fig.2 a) due to a faster polymerization step. On the other hand, when only the photocatalyst amount was increased, neither the product morphology, nor its dye-removal ability were affected. This enables to increase the TiO2 content within the composite with the aim of enhancing its photocatalytic performance. In this respect, the composite stability was tested in water under prolonged UV irradiation, showing that the material optical, structural and morphological properties remained unchanged. The composite was tested towards the removal of anionic azo dyes in aqueous solution, evaluating the effect of the matrix composition and the composite reusability (Fig.2 b), showing promising results

    Inkjet printed doped polyaniline: navigating through physics and chemistry for the next generation devices

    Get PDF
    Innovative benzidine-free PANI-based inks for electrically conducive inkjet printed devices were developed and tested and the results compared with those obtained by traditional PANI. NMR investigations evidenced the presence of quinones and phenolic groups on the backbone of the innovative PANIs that are thought being responsible for the higher solubility in DMSO. A mechanism of reaction was proposed. The numerous characterizations (NMR, UV-Vis, FTIR, XPS and electrical investigations) allowed to compare protonation level, doping level, valence band maximum for both the type of PANI. The correlation among structural properties, printability, conductivity and solubility was discussed

    PANI-TiO2 composites: the mechanism behind a green process

    Get PDF
    Polyaniline (PANI) is an important member of the family of organic conductive polymers, which holds potential in numerous fields, such as electronics, optics and photovoltaics [1]. In recent years, PANI has received increasing attention for application in wastewater treatment due to its sorption properties enabling the removal of a broad range of pollutants [2,3]. Polyaniline is classically synthesized by oxidative polymerization [4], which involves noxious reagents (aniline as starting compound and persulfates as oxidant) and gives rise to toxic and carcinogenic by-products (such as benzidine and trans-azobenzene). A great deal of effort has been devoted to find alternative green routes: in particular, some of us reported a benign synthesis based on aniline dimer ((4-aminophenyl)aniline), H2O2 as oxidant and Fe3+ as catalyst [5]. However, this procedure yields no control on the polymer morphology, leading to a compact PANI with low surface area and poor dye sorption capability. We have recently developed an alternative green synthesis based on TiO2 photocatalysis, enabling a morphological control of the polymer [6]. In this work, the reaction mechanism has been investigated in depth via LC-MS, FT-IR and z-potential analyses. In the first stage, carried out under UV irradiation, the growth of oligomers from the aniline dimer takes place on the TiO2 particle surfaces, activated by the photocatalytic generated radicals. In the second step, the addition of H2O2 (80% less than in the Fe-catalyzed synthesis) activates the polymer growth, giving rise to the final product. By separating the oligomerization and polymerization steps, polymer composites with high crystallinity and porous morphology could be prepared. The dye sorption capability of the samples was tested toward methyl orange as model for anionic azo dyes: promising results were obtained both in terms of dye removal and product reusability. The creation of PANI-TiO2 composites opens the door to future applications exploiting the complementary properties of the two materials, such as pollutant removal processes based on combined sorption and photocatalytic degradation

    Extra-small gold nanospheres decorated with a thiol-functionalized biodegradable and biocompatible linear polyamidoamine as nanovectors of anticancer molecules

    Get PDF
    Gold nanoparticles are elective candidate for cancer therapy. Current efforts are devoted to developing innovative methods for their synthesis. Besides, understanding their interaction with cells have become increasingly important for their clinical application. This work aims to describe a simple approach for the synthesis of extra-small gold nanoparticles for breast cancer therapy. In brief, a biocompatible and biodegradable polyamidoamine (named AGMA1-SH), bearing 20%, on a molar basis, thiol-functionalized repeat units, is employed to stabilize and coat extra-small gold nanospheres of different sizes (2.5, 3.5, and 5 nm in gold core), and to generate a nanoplatform for the link with Trastuzumab monoclonal antibody for HER2-positive breast cancer targeting. Dynamic light scattering, transmission electron microscopy, ultraviolet visible spectroscopy, X-ray powder diffraction, circular dichroism, protein quantification assays are used for the characterization. The targeting properties of the nanosystems are explored to achieve enhanced and selective uptake of AGMA1-SH-gold nanoparticles by in vitro studies against HER-2 overexpressing cells, SKBR-3 and compared to HER-2 low expressing cells, MCF-7, and normal fibroblast cell line, NIH-3T3. In vitro physicochemical characterization demonstrates that gold nanoparticles modified with AGMA1-SH are more stable in aqueous solution than the unmodified ones. Additionally, the greater gold nanoparticles size (5-nm) is associated with a higher stability and conjugation efficiency with Trastuzumab, which retains its folding and anticancer activity after the conjugation. In particular, the larger Trastuzumab functionalized nanoparticles displays the highest efficacy (via the pro-apoptotic protein increase, anti-apoptotic components decrease, survival-proliferation pathways downregulation) and internalization (via the activation of the classical clathrin-mediated endocytosis) in HER-2 overexpressing SKBR-3 cells, without eliciting significant effects on the other cell lines. The use of biocompatible AGMA1-SH for producing covalently stabilized gold nanoparticles to achieve selective targeting, cytotoxicity and uptake is completely novel, offering an important advancement for developing new anticancer conjugated-gold nanoparticles

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore