416 research outputs found

    The neurogenic effects of exogenous neuropeptide Y: early molecular events and long-lasting effects in the hippocampus of trimethyltin-treated rats.

    Get PDF
    Modulation of endogenous neurogenesis is regarded as a promising challenge in neuroprotection. In the rat model of hippocampal neurodegeneration obtained by Trimethyltin (TMT) administration (8 mg/kg), characterised by selective pyramidal cell loss, enhanced neurogenesis, seizures and cognitive impairment, we previously demonstrated a proliferative role of exogenous neuropeptide Y (NPY), on dentate progenitors in the early phases of neurodegeneration. To investigate the functional integration of newly-born neurons, here we studied in adult rats the long-term effects of intracerebroventricular administration of NPY (2 \ub5g/2 \ub5l, 4 days after TMT-treatment), which plays an adjuvant role in neurodegeneration and epilepsy. Our results indicate that 30 days after NPY administration the number of new neurons was still higher in TMT+NPY-treated rats than in control+saline group. As a functional correlate of the integration of new neurons into the hippocampal network, long-term potentiation recorded in Dentate Gyrus (DG) in the absence of GABAA receptor blockade was higher in the TMT+NPY-treated group than in all other groups. Furthermore, qPCR analysis of Kruppel-like factor 9, a transcription factor essential for late-phase maturation of neurons in the DG, and of the cyclin-dependent kinase 5, critically involved in the maturation and dendrite extension of newly-born neurons, revealed a significant up-regulation of both genes in TMT+NPY-treated rats compared with all other groups. To explore the early molecular events activated by NPY administration, the Sonic Hedgehog (Shh) signalling pathway, which participates in the maintenance of the neurogenic hippocampal niche, was evaluated by qPCR 1, 3 and 5 days after NPY-treatment. An early significant up-regulation of Shh expression was detected in TMT+NPY-treated rats compared with all other groups, associated with a modulation of downstream genes. Our data indicate that the neurogenic effect of NPY administration during TMT-induced neurodegeneration involves early Shh pathway activation and results in a functional integration of newly-generated neurons into the local circuit

    Alpha-Synuclein Cell-to-Cell Transfer and Seeding in Grafted Dopaminergic Neurons In Vivo

    Get PDF
    Several people with Parkinson’s disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10–22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology

    Enhanced Efficacy of the CDNF/MANF Family by Combined Intranigral Overexpression in the 6-OHDA Rat Model of Parkinson's Disease

    Get PDF
    Cerebral Dopamine Neurotrophic Factor (CDNF) and Mesencephalic Astrocyte-derived Neurotrophic factor (MANF) are members of a recently discovered family of neurotrophic factors (NTFs). Here, we used intranigral or intrastriatal lentiviral vector-mediated expression to evaluate their efficacy at protecting dopaminergic function in the 6-OHDA model of Parkinson's disease (PD). In contrast to the well-studied Glial-Derived Neurotrophic Factor (GDNF), no beneficial effects were demonstrated by striatal overexpression of either protein. Interestingly, nigral overexpression of CDNF decreased amphetamine-induced rotations and increased tyroxine hydroxylase (TH) striatal fiber density but had no effect on numbers of TH(+) cells in the SN. Nigral MANF overexpression had no effect on amphetamine-induced rotations or TH striatal fiber density but resulted in a significant preservation of TH(+) cells. Combined nigral overexpression of both factors led to a robust reduction in amphetamine-induced rotations, greater increase in striatal TH-fiber density and significant protection of TH(+) cells in the SN. We conclude that nigral CDNF and MANF delivery is more efficacious than striatal delivery. This is also the first study to demonstrate that combined NTF can have synergistic effects that result in enhanced neuroprotection, suggesting that multiple NTF delivery may be more efficacious for the treatment of PD than the single NTF approaches attempted so far.Molecular Therapy (2014); doi:10.1038/mt.2014.206

    Understanding the role of adenosine A2AR heteroreceptor complexes in neurodegeneration and neuroinflammation

    Get PDF
    Adenosine is a nucleoside mainly formed by degradation of ATP, located intracellularly or extracellularly, and acts as a neuromodulator. It operates as a volume transmission signal through diffusion and flow in the extracellular space to modulate the activity of both glial cells and neurons. The effects of adenosine are mediated via four adenosine receptor subtypes: A1R, A2AR, A2BR, A3R. The A2AR has a wide-spread distribution but it is especially enriched in the ventral and dorsal striatum where it is mainly located in the striato-pallidal GABA neurons at a synaptic and extrasynaptic location. A number of A2AR heteroreceptor complexes exist in the striatum. The existence of A2AR-D2R heteroreceptor complexes with antagonistic A2AR-D2R interactions in the striato-pallidal GABA neurons is well-known with A2AR activation inhibiting Gi/o mediated signaling of D2Rs. A2AR-mGluR5 heteroreceptor complexes were also found in with synergistic receptor-receptor interactions enhancing the inhibition of the D2R protomer signaling. They are located mainly in extrasynaptic regions of the striato-pallidal GABA neurons. Results recently demonstrated the existence of brain A2AR-A2BR heteroreceptor complexes, in which A2BR protomer constitutively inhibited the function of the A2AR protomer. These adenosine A2AR heteroreceptor complexes may modulate alpha-synuclein aggregation and toxicity through postulated bidirectional direct interactions leading to marked increases in A2AR signaling both in nerve cells and microglia. It is of high interest that formation of A2AR-A2ABR heteroreceptor complexes provides a brake on A2AR recognition and signaling opening up a novel strategy for treatment of A2AR mediated neurodegeneration. KEYWORDS: G protein-coupled receptor; Parkinson's diseases; adenosine A2A receptor; adenosine receptor; heteroreceptor complexes; neurodegeneration; neuroinflammation; oligomerizatio

    Ret is essential to mediate GDNF’s neuroprotective and neuroregenerative effect in a Parkinson disease mouse model

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF’s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF’s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD

    Molecular changes in the postmortem parkinsonian brain

    Get PDF
    Parkinson disease (PD) is the second most common neurodegenerative disease after Alzheimer disease. Although PD has a relatively narrow clinical phenotype, it has become clear that its etiological basis is broad. Post-mortem brain analysis, despite its limitations, has provided invaluable insights into relevant pathogenic pathways including mitochondrial dysfunction, oxidative stress and protein homeostasis dysregulation. Identification of the genetic causes of PD followed the discovery of these abnormalities, and reinforced the importance of the biochemical defects identified post-mortem. Recent genetic studies have highlighted the mitochondrial and lysosomal areas of cell function as particularly significant in mediating the neurodegeneration of PD. Thus the careful analysis of post-mortem PD brain biochemistry remains a crucial component of research, and one that offers considerable opportunity to pursue etiological factors either by ‘reverse biochemistry’ i.e. from defective pathway to mutant gene, or by the complex interplay between pathways e.g. mitochondrial turnover by lysosomes. In this review we have documented the spectrum of biochemical defects identified in PD post-mortem brain and explored their relevance to metabolic pathways involved in neurodegeneration. We have highlighted the complex interactions between these pathways and the gene mutations causing or increasing risk for PD. These pathways are becoming a focus for the development of disease modifying therapies for PD. Parkinson's is accompanied by multiple changes in the brain that are responsible for the progression of the disease. We describe here the molecular alterations occurring in postmortem brains and classify them as: Neurotransmitters and neurotrophic factors; Lewy bodies and Parkinson's-linked genes; Transition metals, calcium and calcium-binding proteins; Inflammation; Mitochondrial abnormalities and oxidative stress; Abnormal protein removal and degradation; Apoptosis and transduction pathways

    Autophagy Induction as a Therapeutic Strategy for Neurodegenerative Diseases.

    Get PDF
    Autophagy is a major, conserved cellular pathway by which cells deliver cytoplasmic contents to lysosomes for degradation. Genetic studies have revealed extensive links between autophagy and neurodegenerative disease, and disruptions to autophagy may contribute to pathology in some cases. Autophagy degrades many of the toxic, aggregate-prone proteins responsible for such diseases, including mutant huntingtin (mHTT), alpha-synuclein (α-syn), tau, and others, raising the possibility that autophagy upregulation may help to reduce levels of toxic protein species, and thereby alleviate disease. This review examines autophagy induction as a potential therapy in several neurodegenerative diseases-Alzheimer's disease, Parkinson's disease, polyglutamine diseases, and amyotrophic lateral sclerosis (ALS). Evidence in cells and in vivo demonstrates promising results in many disease models, in which autophagy upregulation is able to reduce the levels of toxic proteins, ameliorate signs of disease, and delay disease progression. However, the effective therapeutic use of autophagy induction requires detailed knowledge of how the disease affects the autophagy-lysosome pathway, as activating autophagy when the pathway cannot go to completion (e.g., when lysosomal degradation is impaired) may instead exacerbate disease in some cases. Investigating the interactions between autophagy and disease pathogenesis is thus a critical area for further research
    corecore