4,863 research outputs found

    Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms

    Get PDF
    In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha 7 and alpha 4 beta 2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the therapeutic objectives in potential nicotinic drug treatments of neurodegenerative diseases.In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha 7 and alpha 4 beta 2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the therapeutic objectives in potential nicotinic drug treatments of neurodegenerative diseases

    Understanding the role of adenosine A2AR heteroreceptor complexes in neurodegeneration and neuroinflammation

    Get PDF
    Adenosine is a nucleoside mainly formed by degradation of ATP, located intracellularly or extracellularly, and acts as a neuromodulator. It operates as a volume transmission signal through diffusion and flow in the extracellular space to modulate the activity of both glial cells and neurons. The effects of adenosine are mediated via four adenosine receptor subtypes: A1R, A2AR, A2BR, A3R. The A2AR has a wide-spread distribution but it is especially enriched in the ventral and dorsal striatum where it is mainly located in the striato-pallidal GABA neurons at a synaptic and extrasynaptic location. A number of A2AR heteroreceptor complexes exist in the striatum. The existence of A2AR-D2R heteroreceptor complexes with antagonistic A2AR-D2R interactions in the striato-pallidal GABA neurons is well-known with A2AR activation inhibiting Gi/o mediated signaling of D2Rs. A2AR-mGluR5 heteroreceptor complexes were also found in with synergistic receptor-receptor interactions enhancing the inhibition of the D2R protomer signaling. They are located mainly in extrasynaptic regions of the striato-pallidal GABA neurons. Results recently demonstrated the existence of brain A2AR-A2BR heteroreceptor complexes, in which A2BR protomer constitutively inhibited the function of the A2AR protomer. These adenosine A2AR heteroreceptor complexes may modulate alpha-synuclein aggregation and toxicity through postulated bidirectional direct interactions leading to marked increases in A2AR signaling both in nerve cells and microglia. It is of high interest that formation of A2AR-A2ABR heteroreceptor complexes provides a brake on A2AR recognition and signaling opening up a novel strategy for treatment of A2AR mediated neurodegeneration. KEYWORDS: G protein-coupled receptor; Parkinson's diseases; adenosine A2A receptor; adenosine receptor; heteroreceptor complexes; neurodegeneration; neuroinflammation; oligomerizatio

    On the G-protein-coupled receptor heteromers and their allosteric receptor-receptor interactions in the central nervous system: focus on their role in pain modulation

    Get PDF
    The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via beta-arrestin 2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia

    Role of the 5-HT1A receptors in the effect of Galanin(1-15) on Fluoxetine-mediated action in the forced swimming test

    Get PDF
    Galanin N-terminal fragment (1-15) [GAL(1-15)] modulates the antidepressant effects induced by the 5-HT1A receptor (5-HT1AR) agonist in the forced swimming test (FST) and the binding characteristics and mRNA levels of 5-HT1AR in the dorsal hippocampus and dorsal raphe (DR). Recently, we observed that GAL(1-15) enhanced the antidepressant-like effects induced by Fluoxetine (FLX) in the FST. In this work, we have studied whether the effects of GAL(1–15) on FLX action were mediated via 5-HT1AR, analyzing the effect of the 5-HT1AR antagonist WAY100635 in this effect and if the binding characteristics and mRNA levels of 5-HT1AR in the DR and dorsal hippocampus are modified by GAL(1-15)+FLX. Groups of rats (n=6-8) received three injections of sc FLX(10mg/kg) and 15 minutes before the FST a single icv injection of GAL(1-15) (1nmol) and 5HT1AR antagonist WAY100635(6nmol) icv alone or in combination. We also analyzed the effects of GAL(1-15)+FLX in the binding characteristics of the 5-HT1AR agonist [H3]-8-OH-DPAT and 5-HT1A mRNA levels in the DR, CA1 and Dentate Gyrus (DG). WAY100635 significantly blocked the reduction in immobility time (p<0.05), and the increase in swimming time (p<0.01) induced by GAL(1-15)+FLX in the FST. GAL(1-15)+FLX produced a significant increase in the 5HT1AR mRNA levels in CA1 (p<0.05) and DG (p<0.05). This effect was not observed in the DR. Moreover, GAL(1-15)+FLX produced a significant decrease in the Kd value (p<0.01) and in the Bmax value (p<0.05) of [3H]-8-OH-DPAT in the DG. These effects were not observed in the CA1 or in the DR. These results indicate that 5HT1AR participates in the GAL(1-15)/FLX interactions in the FST and the mechanism underlying affected the binding characteristics and the mRNA levels of 5-HT1AR specifically in the dorsal hippocampus. The heteroreceptor 5-HT1AR-GALR1-GALR2 located in the dorsal hippocampus may be the target for GAL(1-15). This work was supported by SAF2016-79008-P; PSI2013-44901-P.SAF2016-79008-P; PSI2013-44901-P. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Role For Galanin N-Terminal Fragment (1-15) In Anxiety And Depression in rats

    Get PDF
    Ponencia InvitadaGalanin (GAL) is involved in several functions including mood regulation. The GAL N-terminal fragment (1-15) [GAL(1-15)] also participates at central level and a differential role of GAL(1-15) compared with GAL has been proposed. In this work we have analysed if GAL(1-15) contributes to depression- and anxiety -related behaviours using the forced swimming test, tail suspension test, open field and light/dark test. We tested the involvement of the GAL receptor 2 (GALR2) in GAL(1-15) effects with the GAL receptor antagonist M871 and with an in vivo model of siRNA GALR2 knockdown rats. The proximity of GALR1 and GALR1 was also examined with the proximity ligation assay (PLA). GAL(1-15) induced strong depression-like and anxiogenic-like effects in all the tests. The involvement of the GALR2 was demonstrated with M871 and with the siRNA GALR2 knockdown rats. The PLA indicated the existence of GALR1-GALR2 heteroreceptor complexes in the dorsal hippocampus and especially in the dorsal raphe nucleus. Our results indicate that GAL(1-15) exerts strong depression-related and anxiogenic-like effects and may give the basis for the development of drugs targeting GALR1-GALR2 heteroreceptor complexes in the raphe-limbic system for the treatment of depression and anxiety. This study was supported by Junta de Andalucía CVI6476.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Classic and Modern Meridian Studies: A Review of Low Hydraulic Resistance Channels along Meridians and Their Relevance for Therapeutic Effects in Traditional Chinese Medicine

    Get PDF
    Meridian theory is one of the core components of the theory of traditional Chinese medicine (TCM). It gives an integral explanation for how human life works, how a disease forms, and how a therapy acts to treat a disease. If we do not understand the meridians, it is hard to understand the TCM. People in China and abroad had been working hard for 50 years, trying to understand the meridians; then 15 years ago a breakthrough idea appeared when we realized that they are low resistance fluid channels where various chemical and physical transports take place. The channel is called low hydraulic resistance channel (LHRC) and the chemical transport is named volume transmission (VT). This review aims to give a full understanding of the essence of meridian and its works on the therapies of TCM

    Dopamine D4 receptor activation counteracts nigrostriatal pathway activation by morphine: relevance in drug addiction.

    Get PDF
    Morphine induces dopamine release in the caudate putamen (CPu), which promotes stereotyped behavior and habit learning for drug-seeking and –taking. Nigrostriatal pathway stimulation by morphine is due to a removal of tonic inhibition arising from SNr GABA interneurons on SNc dopaminergic neurons through the mu opioid receptor (MOR). Long-term morphine exposure produces a series of adaptations in SNc dopamine neurons, which affect neuron excitability and dopamine output to CPu. We have previously shown that dopamine D4 receptor (D4R) stimulation counteracts acute and chronic morphine-induced accumulation of several transcription factors in the CPu (Gago et al., 2011 Brain Res.). Since D4R is expressed in the SNr (Rivera et al., Brain Res. 2003), we postulate that a functional D4R-MOR interaction at the midbrain level could exists. We have investigated the role of D4R in the morphine-induced nigroestriatal dopamine metabolism in the rat brain using biochemical and immunohistochemical techniques. We also have studied the influence of D4R on morphine-induced morphological changes in SNc dopamine neurons using both immunohistochemical and image analysis techniques. Finally, we examined a possible underlying mechanism of the D4R-MOR interaction at the SN level using in vitro quantitative receptor autoradiography. We have found that D4R activation restores dopamine metabolism in the nigroestriatal pathway after acute morphine treatment and prevents morphine-induced rise of tyroxine hydroxylase and dopamine transporter. Rats receiving a continuous treatment of morphine (6 days) showed SNc dopamine neurons with smaller size and higher circularity index compared with the controls animals. These morphine-induced morphological adaptatives changes were prevented when a D4R agonist (PD168,077) was administered at the same time with morphine. Autoradiographic studies demonstrated that the D4R agonist reduce the affinity of MOR. The present study provides evidence for the existence of a fully blocking effect of the D4R on the activation of dopaminergic nigroestriatal pathway by morphine.Financiación: P09-CVI- 4702 (Proyecto de Excelencia de la Junta de Andalucía

    Galanin decreases NPYY1R internalization and β- Arrestin2 recruitment

    Get PDF
    We have recently described a Galanin receptor 2(GALR2) and Neuropeptide Y Y1 receptor(NPYY1R) interaction at behavioural, cellular and receptor levels through GALR2/NPYY1R heterodimers. The aim of this work was to study if GALR2 and NPYY1R costimulation modified NPYY1R internalization and β-Arrestin recruitment after in HEK293T cells. HEK293T cells were transfected with NPYY1REGFPor β-Arrestin2GFP2 cloned with standard molecular biology techniques employing PCR and fragment replacement strategies. NPYY1REGFP/GALR2 and NPYY1R/GALR2 with β- Arrestin2GFP2 HEK293T coexpressing cells were incubated with NPY 1μM and/or GAL1μM, at different times. Antagonist studies were performed 15 min prior to the addition of agonist with NPYY1R antagonist BIBP3226 10μM or GALR2 antagonist M871 10 μM. Timed-interval images of NPYY1REGFP or β-Arrestin2GFP2 endosomes in different cell groups were acquired using a confocal microscope following agonist addition. Percentage of internalization was determined by Leica software analysis of total membrane fluorescence compared to total internal compartment fluorescence at the various time points. We observed that addition of NPY induced a rapid decrease in the cell surface expression of NPYY1REGFP and a redistribution of β-Arrestin2GFP2. In fact, we observed a maximum of internalization of 80% three minutes after the NPY stimulation. However, combined treatment with GAL and NPY induced a delay in the internalization of NPYY1REGFP, with a maximum of internalization thirty minutes after the co-stimulation. Moreover, a delay in the β-Arrestin2GFP2 redistribution was observed. The specific GALR2 antagonist M871 abolished these delays in internalization of NPYY1REGFP and β-Arrestin2GFP2 redistribution, suggesting that this effect was mediated through the coactivation of GALR2 and NPYY1R. These results demonstrate that costimulation with GAL and NPY delays the internalization of  NPYY1REGFP by decreasing recruitment of β-Arrestin2GFP2 and probably could change intracellular signaling. This study was supported by Junta de Andalucia CVI6476.Junta de Andalucia CVI6476.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Galanin receptor 2 modifies neuropeptide Y Y1 receptor internalization and β-Arrestin recruitment

    Get PDF
    We have recently described a Galanin receptor 2(GALR2) and Neuropeptide Y Y1 receptor(NPYY1R) interaction at behavioural, cellular and receptor levels through GALR2/NPYY1R heterodimers. The aim of this work was to study if GALR2 and NPYY1R costimulation modified NPYY1R internalization and β-Arrestin recruitment after in HEK293T cells. HEK293T cells were transfected with NPYY1REGFPor β-Arrestin2GFP2 cloned with standard molecular biology techniques employing PCR and fragment replacement strategies. NPYY1REGFP/GALR2 and NPYY1R/GALR2 with β- Arrestin2GFP2 HEK293T coexpressing cells were incubated with NPY 1μM and/or GAL1μM, at different times. Antagonist studies were performed 15 min prior to the addition of agonist with NPYY1R antagonist BIBP3226 10μM or GALR2 antagonist M871 10 μM. Timed-interval images of NPYY1REGFP or β-Arrestin2GFP2 endosomes in different cell groups were acquired using a confocal microscope following agonist addition. Percentage of internalization was determined by Leica software analysis of total membrane fluorescence compared to total internal compartment fluorescence at the various time points. We observed that addition of NPY induced a rapid decrease in the cell surface expression of NPYY1REGFP and a redistribution of β-Arrestin2GFP2. In fact, we observed a maximum of internalization of 80% three minutes after the NPY stimulation. However, combined treatment with GAL and NPY induced a delay in the internalization of NPYY1REGFP, with a maximum of internalization thirty minutes after the co-stimulation. Moreover, a delay in the β-Arrestin2GFP2 redistribution was observed. The specific GALR2 antagonist M871 abolished these delays in internalization of NPYY1REGFP and β-Arrestin2GFP2 redistribution, suggesting that this effect was mediated through the coactivation of GALR2 and NPYY1R. These results demonstrate that costimulation with GAL and NPY delays the internalization of  NPYY1REGFP by decreasing recruitment of β-Arrestin2GFP2 and probably could change intracellular signaling. This study was supported by Junta de Andalucia CVI6476.Junta de Andalucia CVI6476.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore