93 research outputs found

    Evidence for high-performance suction feeding in the Pennsylvanian stem-group holocephalan Iniopera

    Get PDF
    The Carboniferous (358.9 to 298.9 Ma) saw the emergence of marine ecosystems dominated by modern vertebrate groups, including abundant stem-group holocephalans (chimaeras and relatives). Compared with the handful of anatomically conservative holocephalan genera alive today-demersal durophages all-these animals were astonishingly morphologically diverse, and bizarre anatomies in groups such as iniopterygians hint at specialized ecological roles foreshadowing those of the later, suction-feeding neopterygians. However, flattened fossils usually obscure these animals' functional morphologies and how they fitted into these important early ecosystems. Here, we use three-dimensional (3D) methods to show that the musculoskeletal anatomy of the uniquely 3D-preserved iniopterygian Iniopera can be best interpreted as being similar to that of living holocephalans rather than elasmobranchs but that it was mechanically unsuited to durophagy. Rather, Iniopera had a small, anteriorly oriented mouth aperture, expandable pharynx, and strong muscular links among the pectoral girdle, neurocranium, and ventral pharynx consistent with high-performance suction feeding, something exhibited by no living holocephalan and never clearly characterized in any of the extinct members of the holocephalan stem-group. Remarkably, in adapting a distinctly holocephalan anatomy to suction feeding, Iniopera is more comparable to modern tetrapod suction feeders than to the more closely related high-performance suction-feeding elasmobranchs. This raises questions about the assumed role of durophagy in the evolution of holocephalans' distinctive anatomy and offers a rare glimpse into the breadth of ecological niches filled by holocephalans in a pre-neopterygian world.</p

    Endochondral bone in an Early Devonian ‘placoderm’ from Mongolia

    Get PDF
    Endochondral bone is the main internal skeletal tissue of nearly all osteichthyans—the group comprising more than 60,000 living species of bony fishes and tetrapods. Chondrichthyans (sharks and their kin) are the living sister group of osteichthyans and have primarily cartilaginous endoskeletons, long considered the ancestral condition for all jawed vertebrates (gnathostomes). The absence of bone in modern jawless fishes and the absence of endochondral ossification in early fossil gnathostomes appear to lend support to this conclusion. Here we report the discovery of extensive endochondral bone in Minjinia turgenensis, a new genus and species of ‘placoderm’-like fish from the Early Devonian (Pragian) of western Mongolia described using X-ray computed microtomography. The fossil consists of a partial skull roof and braincase with anatomical details providing strong evidence of placement in the gnathostome stem group. However, its endochondral space is filled with an extensive network of fine trabeculae resembling the endochondral bone of osteichthyans. Phylogenetic analyses place this new taxon as a proximate sister group of the gnathostome crown. These results provide direct support for theories of generalized bone loss in chondrichthyans. Furthermore, they revive theories of a phylogenetically deeper origin of endochondral bone and its absence in chondrichthyans as a secondary condition

    The three-dimensionally articulated oral apparatus of a Devonian heterostracan sheds light on feeding in Palaeozoic jawless fishes

    Get PDF
    Attempts to explain the origin and diversification of vertebrates have commonly invoked the evolution of feeding ecology, contrasting the passive suspension feeding of invertebrate chordates and larval lampreys with active predation in living jawed vertebrates. Of the extinct jawless vertebrates that phylogenetically intercalate these living groups, the feeding apparatus is well-preserved only in the early diverging stem-gnathostome heterostracans. However, its anatomy remains poorly understood. Here, we use X-ray microtomography to characterize the feeding apparatus of the pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). The apparatus is composed of 13 plates arranged approximately bilaterally, most of which articulate from the postoral plate. Our reconstruction shows that the oral plates were capable of rotating around the transverse axis, but likely with limited movement. It also suggests the nasohypophyseal organs opened internally, into the pharynx. The functional morphology of the apparatus in Rhinopteraspis precludes all proposed interpretations of feeding except for suspension/deposit feeding and we interpret the apparatus as having served primarily to moderate the oral gape. This is consistent with evidence that at least some early jawless gnathostomes were suspension feeders and runs contrary to macroecological scenarios that envisage early vertebrate evolution as characterized by a directional trend towards increasingly active food acquisition

    A revision of Vernicomacanthus Miles with comments on the characters of stem-group chondrichthyans

    Get PDF
    International audiencehe ‘acanthodian’ fishes provide key anatomical insights into the deepest branches of the chondrichthyan stem group. We review the anatomy of the acanthodian Vernicomacanthus uncinatus from the Lochkovian (Lower Devonian, 419.2–410.8 Ma) of Scotland based on eight articulated fossils, one of which is newly described. Broadly, the anatomy of V. uncinatus fits with that of contemporaneous acanthodians such as Climatius and Parexus, with a head covered by robust tesserae, an enlarged postorbital scale, an armoured shoulder girdle, and many pairs of ventrolateral spines. However, it departs from this anatomy in key respects. Its pectoral fin spines are obliquely ridged and posteriorly denticulated, similarly to Carboniferous gyracanth stem-group chondrichthyans. Its scales consist of multiple anteroposteriorly aligned odontodes, similarly to many Palaeozoic ‘sharks’. And its endoskeletal shoulder girdle may have a posterolateral angle, previously observed only in shark-like chondrichthyans. We propose that the differences between V. uncinatus and its congeneric, V. waynensis, which include potentially phylogenetically significant characters of the shoulder girdle and spines, are sufficient to erect a new genus for V. waynensis:Dobunnacanthus gen. nov. The scales of Vernicomacanthus are identical to those of the ‘shark’ scale genus Altholepis, suggesting that some such scales may instead belong to taxa with acanthodian-like gross anatomies. Based on these scales we highlight potential patterns in chondrichthyan scale evolution, in particular the axial addition of odontodes. Anatomical similarities between Vernicomacanthus and gyracanths, highlighted by previous authors, may indicate the existence of a grade including these and similar acanthodian-grade taxa placed relatively crownwards in the chondrichthyan stem-grou

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia

    Get PDF
    The combination of cytotoxic treatment with strategies for immune activation represents an attractive strategy for tumour therapy. Following reduction of high tumour burden by effective cytotoxic agents, two major immune-stimulating approaches are being pursued. First, innate immunity can be activated by monoclonal antibodies triggering antibody-dependent cellular cytotoxicity. Second, tumour-specific T cell responses can be generated by immunization of patients with peptides derived from tumour antigens and infused in soluble form or loaded onto dendritic cells. The choice of cytotoxic agents for such combinatory regimens is crucial since most substances such as fludarabine are considered immunosuppressive while others such as cyclophosphamide can have immunostimulatory activity. We tested in this study whether fludarabine and/or cyclophosphamide, which represent a very effective treatment regimen for chronic lymphocytic leukaemia, would interfere with a therapeutic strategy of T cell activation. Analysis of peripheral blood samples from patients prior and during fludarabine/cyclophosphamide therapy revealed rapid and sustained reduction of tumour cells but also of CD4+ and CD8+ T cells. This correlated with a significant cytotoxic activity of fludarabine/cyclophosphamide on T cells in vitro. Unexpectedly, T cells surviving fludarabine/cyclophosphamide treatment in vitro had a more mature phenotype, while fludarabine-treated T cells were significantly more responsive to mitogenic stimulation than their untreated counterparts and showed a shift towards TH1 cytokine secretion. In conclusion, fludarabine/cyclophosphamide therapy though inducing significant and relevant T cell depletion seems to generate a micromilieu suitable for subsequent T cell activation

    SME Performance, Innovation and Networking - Evidence on Complementarities for a Local Economic System

    Full text link
    The paper addresses the relevancy of networking activities and R&D as main drivers of productivity performance and ouput innovation, for small and medium enterprises (SME) playing in a local economic system. Given the intangible nature of many techno organisational innovation and networking strategies, original recent survey data for manufacturing and services are exploited. The aim is to provide new evidence on the complementarity relationships concerning different networking activities and R&D in a local SME oriented system in Northern Italy. We first introduce a methodological framework to empirically test complementarity among R&D and networking, in a discrete setting. Secondly, we consequently present empirical evidence on productivity drivers and on complementarity between R&D and networking strategies, with respect to firm productivity and process/product output innovation. R&D is a main driver of innovation and productivity, even without networking. This may signify, in association with the evidence on complementarity, that firm expenditures on R&D are a primary driver for performance. The complementarity with networking is a consequential step. Networking by itself cannot thus play a role in stimulating productivity and innovation. It can be a complementary factor in situations where cooperation and networking are needed to achieve economies of scale and/or to merge and integrate diverse skills, technologies and competencies. This is compatible with a framework where networking is the public good part of an impure public good wherein R&D plays the part of the private-led driving force towards structural break from the business as usual scenario. Managers and policy makers should be aware that in order to exploit asset complementarity, possibly transformed into competitive advantages, both R&D and networking are to be sustained and favoured. our evidence suggests that R&D may be a single main driver of performance. Since R&D expenditures are associated with firm size, a policy sustain is to be directed towards firm enlargement. After a certain threshold firms have the force to increase expenditures. The size effect is nevertheless non monotonous. Then, but not least important, for the majority of firms still remaining under a critical size threshold, policy incentives should be directed to R&D in connection with networking, through which a virtuous circle may arise. It is worth noting that it is not networking as such the main engine. Networking elements are crucially linked to innovation dynamics; it is nevertheless innovation that explains and drives networking, and not the often claimed mere existence of local spillovers or of a civic associative culture in the territory. Such public good factors exist but are likely to evolve with and be sustained by firm innovative dynamics

    Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia

    Get PDF
    Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response

    Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice

    Get PDF
    BACKGROUND: Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RESULTS: RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. CONCLUSION: Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections
    corecore