22 research outputs found

    Measurement of the energy asymmetry in t(t)over-barj production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

    Get PDF
    A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 fb−1139\,{\mathrm {fb}}^{-1} 139 fb - 1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13 TeV\sqrt{s}=13\,\text {TeV} s = 13 TeV . The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic ttˉt{\bar{t}} t t ÂŻ decay channel, and the hadronically decaying top quark must have transverse momentum above 350 GeV350\,\text {GeV} 350 GeV . The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be −0.043±0.020-0.043\pm 0.020 - 0.043 ± 0.020 , in agreement with the SM prediction of −0.037±0.003-0.037\pm 0.003 - 0.037 ± 0.003 . Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits

    Measurement of single top-quark production in association with a W boson in the single-lepton channel at \sqrt{s} = 8\,\text {TeV} with the ATLAS detector

    Get PDF
    The production cross-section of a top quark in association with a W boson is measured using proton–proton collisions at \sqrt{s} = 8\,\text {TeV}. The dataset corresponds to an integrated luminosity of 20.2\,\text {fb}^{-1}, and was collected in 2012 by the ATLAS detector at the Large Hadron Collider at CERN. The analysis is performed in the single-lepton channel. Events are selected by requiring one isolated lepton (electron or muon) and at least three jets. A neural network is trained to separate the tW signal from the dominant t{\bar{t}} background. The cross-section is extracted from a binned profile maximum-likelihood fit to a two-dimensional discriminant built from the neural-network output and the invariant mass of the hadronically decaying W boson. The measured cross-section is \sigma _{tW} = 26 \pm 7\,\text {pb}, in good agreement with the Standard Model expectation

    Measurements of electroweak Wjj production and constraints on anomalous gauge couplings with the ATLAS detector

    Get PDF
    Measurements of the electroweak production of a W boson in association with two jets at high dijet invariant mass are performed using root s = 7 and 8 TeV proton-proton collision data produced by the Large Hadron Collider, corresponding respectively to 4.7 and 20.2 fb(-1) of integrated luminosity collected by the ATLAS detector. The measurements are sensitive to the production of a W boson via a triple-gauge-boson vertex and include both the fiducial and differential cross sections of the electroweak process

    Measurement of jet fragmentation in Pb+Pb and pp collisions at √SNN = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb−1−1 of Pb+Pb data and 4.0 pb−1−1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet pTpT and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets

    Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in s√=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for chargino–neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of s√=13 TeV pp collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb−1. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos (χ~±1) and neutralinos (χ~02) are considered. For pure higgsino χ~±1χ~02 pair-production scenarios, exclusion limits at 95% confidence level are set on χ~02 masses up to 210 GeV. Limits are also set for pure wino χ~±1χ~02 pair production, on χ~02 masses up to 640 GeV for decays via on-shell W and Z bosons, up to 300 GeV for decays via off-shell W and Z bosons, and up to 190 GeV for decays via W and Standard Model Higgs bosons

    Measurement of the W-boson mass in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8 × 106 candidates in the W → ΌΜ channel and 5.9 × 106 candidates in the W → eÎœ channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW = 80370 ± 7 (stat.) ± 11(exp. syst.) ± 14 (mod. syst.) MeV = 80370 ± 19 MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W− bosons yields mW+ − mW− = − 29 ± 28 MeV

    Measurements of top-quark pair differential cross-sections in the lepton plus jets channel in pp collisions at root s=8 TeV using the ATLAS detector

    Get PDF
    Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, tt¯tt¯ system and event-level kinematic observables in proton–proton collisions at a centre-of-mass energy of s√=8TeVs=8TeV . The observables have been chosen to emphasize the tt¯tt¯ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb −1−1 , recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used

    Measurement of the W-boson mass in pp collisions at s√=7TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→ΌΜ channel and 5.9×106 candidates in the W→eÎœ channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370=80370±7 (stat.)±11(exp. syst.)±14 (mod. syst.) MeV±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W− bosons yields mW+−mW−=−29±28 MeV

    Search for new phenomena in high-mass final states with a photon and a jet from pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    A search is performed for new phenomena in events having a photon with high transverse momentum and a jet collected in 36.7 fb−1 of proton–proton collisions at a centre-of-mass energy of s√ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The invariant mass distribution of the leading photon and jet is examined to look for the resonant production of new particles or the presence of new high-mass states beyond the Standard Model. No significant deviation from the background-only hypothesis is observed and cross-section limits for generic Gaussian-shaped resonances are extracted. Excited quarks hypothesized in quark compositeness models and high-mass states predicted in quantum black hole models with extra dimensions are also examined in the analysis. The observed data exclude, at 95% confidence level, the mass range below 5.3 TeV for excited quarks and 7.1 TeV (4.4 TeV) for quantum black holes in the Arkani-Hamed–Dimopoulos–Dvali (Randall–Sundrum) model with six (one) extra dimensions
    corecore