61 research outputs found

    Randomized Clinical Trials and Observational Tribulations: Providing Clinical Evidence for Personalized Surgical Pain Management Care Models

    Get PDF
    Proving clinical superiority of personalized care models in interventional and surgical pain management is challenging. The apparent difficulties may arise from the inability to standardize complex surgical procedures that often involve multiple steps. Ensuring the surgery is performed the same way every time is nearly impossible. Confounding factors, such as the variability of the patient population and selection bias regarding comorbidities and anatomical variations are also difficult to control for. Small sample sizes in study groups comparing iterations of a surgical protocol may amplify bias. It is essentially impossible to conceal the surgical treatment from the surgeon and the operating team. Restrictive inclusion and exclusion criteria may distort the study population to no longer reflect patients seen in daily practice. Hindsight bias is introduced by the inability to effectively blind patient group allocation, which affects clinical result interpretation, particularly if the outcome is already known to the investigators when the outcome analysis is performed (often a long time after the intervention). Randomization is equally problematic, as many patients want to avoid being randomly assigned to a study group, particularly if they perceive their surgeon to be unsure of which treatment will likely render the best clinical outcome for them. Ethical concerns may also exist if the study involves additional and unnecessary risks. Lastly, surgical trials are costly, especially if the tested interventions are complex and require long-term follow-up to assess their benefit. Traditional clinical testing of personalized surgical pain management treatments may be more challenging because individualized solutions tailored to each patient’s pain generator can vary extensively. However, high-grade evidence is needed to prompt a protocol change and break with traditional image-based criteria for treatment. In this article, the authors review issues in surgical trials and offer practical solutions

    The Changing Environment in Postgraduate Education in Orthopedic Surgery and Neurosurgery and Its Impact on Technology-Driven Targeted Interventional and Surgical Pain Management : Perspectives from Europe, Latin America, Asia, and The United States

    Get PDF
    Personalized care models are dominating modern medicine. These models are rooted in teaching future physicians the skill set to keep up with innovation. In orthopedic surgery and neurosurgery, education is increasingly influenced by augmented reality, simulation, navigation, robotics, and in some cases, artificial intelligence. The postpandemic learning environment has also changed, emphasizing online learning and skill- and competency-based teaching models incorporating clinical and bench-top research. Attempts to improve work–life balance and minimize physician burnout have led to work-hour restrictions in postgraduate training programs. These restrictions have made it particularly challenging for orthopedic and neurosurgery residents to acquire the knowledge and skill set to meet the requirements for certification. The fast-paced flow of information and the rapid implementation of innovation require higher efficiencies in the modern postgraduate training environment. However, what is taught typically lags several years behind. Examples include minimally invasive tissue-sparing techniques through tubular small-bladed retractor systems, robotic and navigation, endoscopic, patient-specific implants made possible by advances in imaging technology and 3D printing, and regenerative strategies. Currently, the traditional roles of mentee and mentor are being redefined. The future orthopedic surgeons and neurosurgeons involved in personalized surgical pain management will need to be versed in several disciplines ranging from bioengineering, basic research, computer, social and health sciences, clinical study, trial design, public health policy development, and economic accountability. Solutions to the fast-paced innovation cycle in orthopedic surgery and neurosurgery include adaptive learning skills to seize opportunities for innovation with execution and implementation by facilitating translational research and clinical program development across traditional boundaries between clinical and nonclinical specialties. Preparing the future generation of surgeons to have the aptitude to keep up with the rapid technological advances is challenging for postgraduate residency programs and accreditation agencies. However, implementing clinical protocol change when the entrepreneur–investigator surgeon substantiates it with high-grade clinical evidence is at the heart of personalized surgical pain management

    Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons

    Get PDF
    Although the role of the microtubule-binding domain of the tau protein in the modulation of microtubule assembly is widely established, other possible functions of this protein have been poorly investigated. We have analyzed the effect of adenovirally mediated expression of two fragments of the N-terminal portion - free of microtubule-binding domain - of the tau protein in cerebellar granule neurons (CGNs). We found that while the expression of the tau (1-230) fragment, as well as of full-length tau, inhibits the onset of apoptosis, the tau (1-44) fragment exerts a powerful toxic action on the same neurons. The antiapoptotic action of tau (1-230) is exerted at the level of Akt-mediated activation of the caspase cascade. On the other hand, the toxic action of the (1-44) fragment is not prevented by inhibitors of CGN apoptosis, but is fully inhibited by NMDA receptor antagonists. These findings point to a novel, physiological role of the N-terminal domain of tau, but also underlay that its possible proteolytic truncation mediated by apoptotic proteases may generate a highly toxic fragment that could contribute to neuronal death

    Avoidable costs of physical treatments for chronic back, neck and shoulder pain within the Spanish National Health Service: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Back, neck and shoulder pain are the most common causes of occupational disability. They reduce health-related quality of life and have a significant economic impact. Many different forms of physical treatment are routinely used. The objective of this study was to estimate the cost of physical treatments which, despite the absence of evidence supporting their effectiveness, were used between 2004 and 2007 for chronic and non-specific neck pain (NP), back pain (BP) and shoulder pain (SP), within the Spanish National Health Service in the Canary Islands (SNHSCI).</p> <p>Methods</p> <p>Chronic patients referred from the SNHSCI to private physical therapy centres for NP, BP or SP, between 2004 and 2007, were identified. The cost of providing physical therapies to these patients was estimated. Systematic reviews (SRs) and clinical practice guidelines (CPGs) for NP, BP and SP available in the same period were searched for and rated according to the Oxman and AGREE criteria, respectively. Those rated positively for ≥70% of the criteria, were used to categorise physical therapies as Effective; Ineffective; Inconclusive; and Insufficiently Assessed. The main outcome was the cost of physical therapies included in each of these categories.</p> <p>Results</p> <p>8,308 chronic cases of NP, 4,693 of BP and 5,035 of SP, were included in this study. Among prescribed treatments, 39.88% were considered Effective (physical exercise and manual therapy with mobilization); 23.06% Ineffective; 13.38% Inconclusive, and 23.66% Insufficiently Assessed. The total cost of treatments was € 5,107,720. Effective therapies accounted for € 2,069,932.</p> <p>Conclusions</p> <p>Sixty percent of the resources allocated by the SNHSCI to fund physical treatment for NP, BP and SP in private practices are spent on forms of treatment proven to be ineffective, or for which there is no evidence of effectiveness.</p

    Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment

    Get PDF
    Peer reviewe

    Search for new long-lived particles at root s=13 TeV

    Get PDF
    A search for long-lived particles was performed with data corresponding to an integrated luminosity of 2.6 fb(-1) collected at a center-of-mass energy of 13 TeV by the CMS experiment in 2015. The analysis exploits two customized topological trigger algorithms, and uses the multiplicity of displaced jets to search for the presence of a signal decay occurring at distances between 1 and 1000 mm. The results can be interpreted in a variety of different models. For pair-produced long-lived particles decaying to two b quarks and two leptons with equal decay rates between lepton flavors, cross sections larger than 2.5 fb are excluded for proper decay lengths between 70-100 mm for a long-lived particle mass of 1130 GeV at 95% confidence. For a specific model of pair-produced, long-lived top squarks with R-parity violating decays to a b quark and a lepton, masses below 550-1130 GeV are excluded at 95% confidence for equal branching fractions between lepton flavors, depending on the squark decay length. This mass bound is the most stringent to date for top squark proper decay lengths greater than 3 mm. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe

    Upsilon (nS) polarizations versus particle multiplicity in pp collisions at root s=7 TeV

    Get PDF
    Peer reviewe

    Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state

    Get PDF
    © 2017 The Author A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13TeV and correspond to an integrated luminosity of 38.6fb −1 . They are combined with the data collected at center-of-mass energies of 7 and 8TeV, corresponding to integrated luminosities of 5.1 and 19.7fb −1 , respectively. All observations are consistent with the expectations for the standard model Higgs boson

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF
    corecore