503 research outputs found

    Sustainable Cooperative Coevolution with a Multi-Armed Bandit

    Get PDF
    This paper proposes a self-adaptation mechanism to manage the resources allocated to the different species comprising a cooperative coevolutionary algorithm. The proposed approach relies on a dynamic extension to the well-known multi-armed bandit framework. At each iteration, the dynamic multi-armed bandit makes a decision on which species to evolve for a generation, using the history of progress made by the different species to guide the decisions. We show experimentally, on a benchmark and a real-world problem, that evolving the different populations at different paces allows not only to identify solutions more rapidly, but also improves the capacity of cooperative coevolution to solve more complex problems.Comment: Accepted at GECCO 201

    Constructing Low Star Discrepancy Point Sets with Genetic Algorithms

    Full text link
    Geometric discrepancies are standard measures to quantify the irregularity of distributions. They are an important notion in numerical integration. One of the most important discrepancy notions is the so-called \emph{star discrepancy}. Roughly speaking, a point set of low star discrepancy value allows for a small approximation error in quasi-Monte Carlo integration. It is thus the most studied discrepancy notion. In this work we present a new algorithm to compute point sets of low star discrepancy. The two components of the algorithm (for the optimization and the evaluation, respectively) are based on evolutionary principles. Our algorithm clearly outperforms existing approaches. To the best of our knowledge, it is also the first algorithm which can be adapted easily to optimize inverse star discrepancies.Comment: Extended abstract appeared at GECCO 2013. v2: corrected 3 numbers in table

    Optimizing Low-Discrepancy Sequences with an Evolutionary Algorithm

    Get PDF
    International audienceMany elds rely on some stochastic sampling of a given com- plex space. Low-discrepancy sequences are methods aim- ing at producing samples with better space-lling properties than uniformly distributed random numbers, hence allow- ing a more ecient sampling of that space. State-of-the-art methods like nearly orthogonal Latin hypercubes and scram- bled Halton sequences are congured by permutations of in- ternal parameters, where permutations are commonly done randomly. This paper proposes the use of evolutionary al- gorithms to evolve these permutations, in order to optimize a discrepancy measure. Results show that an evolution- ary method is able to generate low-discrepancy sequences of signicantly better space-lling properties compared to sequences congured with purely random permutations

    Design d'expérimentation interactif : aide à la compréhension de systèmes complexes

    Get PDF
    Ce mémoire propose des outils de design d'expérimentations ayant pour but d'aider un analyste dans son investigation d'un système complexe. Les méthodes présentées se divisent en trois groupes, l'exploration, l'optimisation et l'approximation. Les trois ensembles répondent chacun à un besoin particulier lors de l'analyse de système complexe. L'exploration permet de disperser uniformément une collection d'expériences dans l'espace des paramètres du problème. L'optimisation, pour sa part, donne la possibilité de trouver les combinaisons de paramètres optimales du problème. L'approximation, quant à elle, octroie la possibilité d'estimer le résultat de combinaisons de facteurs dont la réponse est inconnue ou difficile à obtenir. Mises ensemble, ces méthodes forment le design d'expérimentation interactif. Elles permettent à un analyste d'obtenir, par le biais de méthodes éprouvées, une information détaillée sur le système étudié

    Placement interactif de capteurs mobiles dans des environnements tridimensionnels non convexes

    Get PDF
    La présente thèse propose un système complet de placement de capteurs mobiles dans un environnement pleinement tridimensionnel et préalablement inconnu. Les capteurs mobiles sont des capteurs placés sur des unités robotiques autonomes, soit des véhicules possédant une unité de calcul et pouvant se déplacer dans l’environnement. Le placement de capteur est fondé sur une vue désirée par un utilisateur du système nommé vue virtuelle. La vue virtuelle est contrôlée à distance en changeant les paramètres intrinsèques et extrinsèques du capteur virtuel, soit sa position, sa résolution, son champ de vue, etc. Le capteur virtuel n’est alors soumis à aucune contrainte physique, par exemple il peut être placé à n’importe quelle hauteur dans l’environnement et avoir un champ de vue et une résolution arbitrairement grande. Les capteurs mobiles (réels) ont pour tâche de récupérer toute l’information contenue dans le point de vue virtuel. Ce n’est qu’en combinant leur capacité sensorielle que les capteurs mobiles pourront capter l’information demandée par l’utilisateur. Tout d’abord, cette thèse s’attaque au problème de placement de capteurs en définissant une fonction de visibilité servant à évaluer le positionnement d’un groupe de capteurs dans l’environnement. La fonction de visibilité développée est applicable aux environnements tridimensionnels et se base sur le principe de ligne de vue directe entre un capteur et la cible. De plus, la fonction prend en compte la densité d’échantillonnage des capteurs afin de reproduire la densité désirée indiquée par le capteur virtuel. Ensuite, ce travail propose l’utilisation d’un modèle de l’environnement pleinement tridimensionnel et pouvant être construit de manière incrémentale, rendant son utilisation possible dans un environnement tridimensionnel non convexe préalablement inconnu. Puis, un algorithme d’optimisation coopératif est présenté afin de trouver simultanément le nombre de capteurs et leur positionnement respectif afin d’acquérir l’information contenue dans la vue virtuelle. Finalement, la thèse démontre expérimentalement dans diverses conditions que le système proposé est supérieur à l’état de l’art pour le placement de capteurs dans le but d’observer une scène bidimensionnelle. Il est aussi établi expérimentalement en simulation et en réalité que les performances se transposent à l’observation d’environnements tridimensionnels non convexes préalablement inconnus.This Thesis proposes a novel mobile sensor placement system working in initially unknown three dimensional environment. The mobile sensors are fix sensors placed on autonomous robots, which are ground and aerial vehicles equipped with computing units. The sensor placement is based on a user-defined view, named the virtual view. This view is manipulated through a virtual sensor intrinsic and extrinsic parameters, such as its position, orientation, field of view, resolution, etc. The virtual sensor is not subject to any physical constraint, for example it can be place where no sensor could be or it possess an arbitrary large field of view and resolution. The mobile (real) sensors have to acquire the entire information contained in this virtual view. It is only by combining the sensory capacity of an unknown number of sensors that they can acquire the necessary information. First, this Thesis addresses the sensor placement problem by defining a visibility function to qualify a group of sensor configurations in the environment. This function is applicable to three dimensional environments and is based on direct line of sight principle, where we compute the sensor sampling density in its visibility region. Then, this Thesis proposes the use of an incrementally built model of the environment containing all the information needed by the objective function. Next, a cooperative optimization algorithm is put forward to simultaneously find the number of sensors and their respective position required to capture all the information in the virtual view. Finally, the proposed system is experimentally shown to use less sensor to acquire the scene of interest at a higher resolution than state of the art methods in initially known two dimensional environments. It is also shown in simulation and practice that the performance of the system can be transposed to initially unknown non-convex three dimensional environments

    Quantum Diffusions and Appell Systems

    Get PDF
    Within the algebraic framework of Hopf algebras, random walks and associated diffusion equations (master equations) are constructed and studied for two basic operator algebras of Quantum Mechanics i.e the Heisenberg-Weyl algebra (hw) and its q-deformed version hw_q. This is done by means of functionals determined by the associated coherent state density operators. The ensuing master equations admit solutions given by hw and hw_q-valued Appell systems.Comment: Latex 12 pages, no figures. Submitted to Journal of Computational and Applied Mathematics. Special Issue of Proccedings of Fifth Inter. Symp. on Orthogonal Polynomaials, Special Functions and their Application

    The Odyssey of Dental Anxiety: From Prehistory to the Present. A Narrative Review

    Get PDF
    Dental anxiety (DA) can be considered as a universal phenomenon with a high prevalence worldwide; DA and pain are also the main causes for medical emergencies in the dental office, so their prevention is an essential part of patient safety and overall quality of care. Being DA and its consequences closely related to the fight-or-flight reaction, it seems reasonable to argue that the odyssey of DA began way back in the distant past, and has since probably evolved in parallel with the development of fight-or-flight reactions, implicit memory and knowledge, and ultimately consciousness. Basic emotions are related to survival functions in an inseparable psychosomatic unity that enable an immediate response to critical situations rather than generating knowledge, which is why many anxious patients are unaware of the cause of their anxiety. Archeological findings suggest that humans have been surprisingly skillful and knowledgeable since prehistory. Neanderthals used medicinal plants; and relics of dental tools bear witness to a kind of Neolithic proto-dentistry. In the two millennia BC, Egyptian and Greek physicians used both plants (such as papaver somniferum) and incubation (a forerunner of modern hypnosis, e.g., in the sleep temples dedicated to Asclepius) in the attempt to provide some form of therapy and painless surgery, whereas modern scientific medicine strongly understated the role of subjectivity and mind-body approaches until recently. DA has a wide range of causes and its management is far from being a matter of identifying the ideal sedative drug. A patient's proper management must include assessing his/her dental anxiety, ensuring good communications, and providing information (iatrosedation), effective local anesthesia, hypnosis, and/or a wise use of sedative drugs where necessary. Any weak link in this chain can cause avoidable suffering, mistrust, and emergencies, as well as having lifelong psychological consequences. Iatrosedation and hypnosis are no less relevant than drugs and should be considered as primary tools for the management of DA. Unlike pharmacological sedation, they allow to help patients cope with the dental procedure and also overcome their anxiety: achieving the latter may enable them to face future dental care autonomously, whereas pharmacological sedation can only afford a transient respite

    On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations

    Get PDF
    In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population

    Get PDF
    <p>Abstract</p> <p>Background-</p> <p>Prior studies that have concluded that disk degeneration uniformly precedes facet degeneration have been based on convenience samples of individuals with low back pain. We conducted a study to examine whether the view that spinal degeneration begins with the anterior spinal structures is supported by epidemiologic observations of degeneration in a community-based population.</p> <p>Methods-</p> <p>361 participants from the Framingham Heart Study were included in this study. The prevalences of anterior vertebral structure degeneration (disk height loss) and posterior vertebral structure degeneration (facet joint osteoarthritis) were characterized by CT imaging. The cohort was divided into the structural subgroups of participants with 1) no degeneration, 2) isolated anterior degeneration (without posterior degeneration), 3) combined anterior and posterior degeneration, and 4) isolated posterior degeneration (without anterior structure degeneration). We determined the prevalence of each degeneration pattern by age group < 45, 45-54, 55-64, ≥65. In multivariate analyses we examined the association between disk height loss and the response variable of facet joint osteoarthritis, while adjusting for age, sex, BMI, and smoking.</p> <p>Results-</p> <p>As the prevalence of the no degeneration and isolated anterior degeneration patterns decreased with increasing age group, the prevalence of the combined anterior/posterior degeneration pattern increased. 22% of individuals demonstrated isolated posterior degeneration, without an increase in prevalence by age group. Isolated posterior degeneration was most common at the L5-S1 and L4-L5 spinal levels. In multivariate analyses, disk height loss was independently associated with facet joint osteoarthritis, as were increased age (years), female sex, and increased BMI (kg/m<sup>2</sup>), but not smoking.</p> <p>Conclusions-</p> <p>The observed epidemiology of lumbar spinal degeneration in the community-based population is consistent with an ordered progression beginning in the anterior structures, for the majority of individuals. However, some individuals demonstrate atypical patterns of degeneration, beginning in the posterior joints. Increased age and BMI, and female sex may be related to the occurrence of isolated posterior degeneration in these individuals.</p
    • …
    corecore