
Journal of Computational and Applied Mathematics 133 (2001) 341–353
www.elsevier.com/locate/cam

Quantum di#usions and Appell systems
Demosthenes Ellinas ∗

Department of Sciences, Section of Mathematics, Technical University of Crete, GR-73 100 Chania Crete, Greece

Received 16 November 1999; received in revised form 17 March 2000

Abstract

Within the algebraic framework of Hopf algebras, random walks and associated di#usion equations (master equations)
are constructed and studied for two basic operator algebras of quantum mechanics i.e. the Heisenberg–Weyl algebra (hw)
and its q-deformed version hwq. This is done by means of functionals determined by the associated coherent state density
operators. The ensuing master equations admit solutions given by hw and hwq-valued Appell systems. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

We work in the general framework of the so-called quantum probability theory [36,42] and more
speci;cally along the research line relating random walks, di#usions and Markov transition operators
to Lie–Hopf algebras [32]. Our aim is to construct algebraic random walks and their di#usion
limit in terms of master equations [39]. Two kinds of new results are obtained: ;rst the Hopf
algebraic formulation of random walks of [32–34] is extended to quantum random walks and their
associated Lindblad-type master equations are constructed for two typical operator algebras and their
solutions are studied in the framework of generalized Appell systems; second, from the physical
application point of view the so-obtained master equations can be interpreted as describing the
dissipative dynamics of a single (canonical and noncanonical) quantum oscillator interacting with a
heathbath the properties of which are determined by choosing the underlying Hopf algebra structure
and a related positive de;nite, linear and normalized functional given by a convex combination
of selected density operators. It is obvious from the following exposition that the mathematical
framework is rather broad and unifying so that it allows to construct and study the dynamics of
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physically di#erent random walks by making proper choices of the type of underlying algebras and
functionals on them. Speci;cally, we work with two basic operator algebras of quantum mechanics
[23] i.e. the Heisenberg–Weyl algebra (hw) and its q-deformed version hwq [6,10,28,31], and use
their Hopf-algebra-like structures for our construction (Section 2). The density of the two functionals
needed is constructed by the association to those algebras coherent states vectors [27,37]. As the
random walks take place on the manifold of these coherent states vectors it is important to investigate
their geometrical features (Section 3). Then a limiting procedure leads to the master (di#usion)
equations for the case of hw random walk (Section 5) and the case of hwq random walk (Section
6), correspondingly. The solutions of the resulting master equations of motion for certain general
elements of the respective operator algebras are obtained in terms of the associated operator-valued
Appell systems [19–22]. Certain generalities of classical Appell systems are discussed in Section 4
[2,3,9,38,43]. Finally, some technicalities such as ordering formulae for generators of the two hw
algebras [26], as well as some Baker–Campbell–Hausdor# decompositions formulae for the SU(1; 1)
group elements [40,44,45] are summarized in Appendices A and B.

2. Hopf algebras

A ∗-Hopf algebra [1] A=A(�; �; �; �; S) over a ;eld k is a vector space equipped with an algebra
structure with homomorphic associative product map � :A×A → A, and a homomorphic unit map
� : k → A, that are related by � ◦ (� ⊗ id) = id = � ◦ (id ⊗ �), together with a coalgebra structure
with a homomorphic coassociative coproduct map � :A → A⊗A and a homomorphic counit map
� :A → k, that are interrelated between by (�⊗ id) ◦�= id = (id⊗ �) ◦�. Both products satisfy the
compatibility condition of bialgebra i.e. (�⊗�)◦(id⊗	⊗ id)◦(�⊗�)=�◦�, where 	(x⊗y)=y⊗x
stands for the twist map. If � or � is not de;ned in A, we speak about nonunital or noncounital
Hopf algebra.

Suppose that we have a functional � :A → C, de;ned on A, that is linear, positive semi-de;nite
�(a∗a)¿0, and normalized �(1)=1, and let us de;ne the operator T� :A → A as T�=(�⊗ id)◦�,
then � ◦ T� = �, namely the counit aids to pass from the operator to its associated functional. From
this relation, we can de;ne the convolution product  ∗ �, between functionals as follows [33]:

� ◦ T T� = � ◦ ( ⊗ id) ◦ � ◦ (�⊗ id) ◦ �= (�⊗  ) ◦ (id ⊗ id ⊗ �) ◦ (id ⊗ �) ◦ �

= (�⊗  ) ◦ �= � ∗  ; (1)

and in general � ◦ Tn
� = � ◦ T�∗n = �∗n. These last relations imply that the transition operators form

a discrete semigroup w.r.t. their composition with identity element T� ≡ id (due to the axioms of
Hopf algebra) and generator T�, while the functionals form a dual semigroup w.r.t. the convolution
with identity element e and generator �, and that these two semigroups are homomorphic to each
other.

We recall now two algebras and their structural maps that concern us here:
(i) Heisenberg–Weyl algebra hw: This is the algebra of the quantum mechanical oscillator and

is generated by the creation, annihilation and the unit operator {a†; a; 1}, respectively, which satisfy
the commutation relation (Lie bracket) [a; a†] = 1, while 1 commutes with the other elements. This
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algebra possesses a natural noncounital Hopf algebra structure (or bialgebra-like cf. [32], Chapter
3), with nth fold comultiplication involving n terms, de;ned as

�(n−1)a= n−1=2(a⊗ · · · ⊗ 1+ 1⊗ a⊗ · · · ⊗ 1+ 1⊗ · · · ⊗ a);

�(n−1)a† = n−1=2(a† ⊗ · · · ⊗ 1+ 1⊗ a† ⊗ · · · ⊗ 1+ 1⊗ · · · ⊗ a†);

�1= 1⊗ 1+ 1⊗ 1: (2)

Let us also de;ne the so-called number operator N = a†a with the following commutation relations
with the generators of hw:

[a; a†] = 1; [N; a†] = a†; [N; a] =−a: (3)

The module which carries the unique irreducible and in;nite-dimensional representation of the os-
cillator algebra is the Hilbert–Fock space HF which is generated by a starting (or “vacuum”) state
vector |0〉 ∈ H and is given as H= {|n〉= ((a†)n=n!)|0〉; n ∈ Z+}.
(ii) The q-deformed Heisenberg–Weyl algebra hwq: The q-deform Heisenberg–Weyl algebra is

generated by the elements hwq = 〈b; b†; qN ; q−N ; 1〉 that satisfy the relations

bb† − q−1b†b= qN ; qNq−N = 1;

qNbq−N = q−1b; qNb†q−N = qb†: (4)

For real q the Fock representation space is spanned by the vectors {|n〉=((b†)n=
√
[n]q!)|0〉; n ∈ Z+},

where [n]q =(qn − q−n)=(q− q−1) and [n]q =[1]q[2]q : : : [n]q. In the Fock space representation of this
algebra, we have the additional relations b†b=[N ]q, bb

†=[N +1]q. This algebra has no satisfactory
Hopf structure but still, as will be seen below, we can de;ne algebraic random walks on it and
study their di#usion limit. To this end let us make the transformations [6,10,28,31] aq = qN=2b and
a†q = b†qN=2, and obtain the resulting algebra

aqa†q − q2a†qaq = 1; (5)

which is the new form of the hwq algebra [41]. Although not an algebra homomorphism, we will
use below the coassociative maps

�aq = aq ⊗ 1+ 1⊗ aq; �a†q = a†q ⊗ 1+ 1⊗ a†q: (6)

3. Functionals

Since the linear functionals on the operator algebras that we intend to build up random walks
will be constructed by means of density operators given in terms of the so-called coherent states,
we give here a brief introduction to the concept and collect some formulae. Let us consider a Lie
group G, with a unitary irreducible representation T (g), g ∈ G, in a complex Hilbert space H. We
select a reference vector |�0〉 ∈ H, to be called the “vacuum” state vector, and let G0 ⊂G be its
isotropy subgroup, i.e. for h ∈ G0, T (h)|�0〉=ei’(h)|�0〉. The map from the factor group M=G=G0

to the Hilbert space H, introduced in the form of an orbit of the vacuum state under a factor group
element, de;nes a CSV |x〉=T (G=G0)|�0〉 labelled by points x ∈ M of the coherent state manifold.
(cf. [27,37] and references therein).
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What concerns us here is mostly the geometry of the CS manifold M. This is due to the fact
that the random walks and their di#usion limits that will be studied below will be given in terms
of functionals associated with coherent states so that the random walks will be induced on the
functions de;ned on M (passive description) or on the operators acting on the functions de;ned
on M (active description). Although only the latter description will be studied here in terms of the
quantum master equations, it should be obvious that the geometry of the background manifold M
namely both the Riemannian and the symplectic geometry (the symplectic geometry especially in
the case of nonstationary random walks), will manifest itself in the associated di#usion equations.
Speci;cally, below it will be shown that the hw random walk takes place on the Nat complex
plane C with canonical symplectic structure, while the deformed hwq random walk takes place on a
q-deformed surface of revolution with modi;ed, due to q-deformation, Riemannian and symplectic
geometry. This fact provides a further motivation for studying random walks and di#usions within
the present algebraic framework since in this way, we are able to study these phenomena taking
place on nontrivial spaces. Detailed constructions and studies can be found elsewhere [11,14,15];
here we summarize some relevant information:

Let us ;rst specialize to the HW group: The hw-CS is de;ned by the relation

|�〉= e�a
†− O�a|0〉=Ne�a

† |0〉= e−1=2|�|2
∞∑
n=0

�n

√
n!
|n〉: (7)

It is an (over)complete set of states with respect to the measure d�(�) = 1=�e−|�|2 d2� for the
nonnormalized CS, and � ∈ M = HW=U (1) ≈ C is the CS manifold. Since a|�〉 = �|�〉, M is the
Nat canonical phase plane with the standard line element ds2 = d� d O�. Also, the symplectic 2-form
!= id� ∧ d O� is associated to the canonical Poisson bracket {f; g}= i(@f

� @
g
O� − @f

O� @
g
�).

Next, we turn to the hwq case: The de;nition of the hwq-CS reads [11,14,15]

|�〉q = e
�a†q
q |0〉= e�A

†
q |0〉=

∞∑
n=0

�n

√
[n]!

|n〉; (8)

where [n] = (q2n − 1)=(q2 − 1). The states are ;rst de;ned in terms of the q-deformed exponential
function exq =

∑
n¿0(x

n=[n]!) and the q-creation operator and then equivalently by exponentiation of
the operator A†

q =(N=[N ])a†q, that satis;es with the hwq elements the hw algebra relations [11,14,15]

[aq; A†
q] = 1; [Aq; a†q] = 1: (9)

The q-CS is an (over)complete set of states [8,24,25] with respect to the measure d�(�)q=1=�(e|�|2q )−1

d2
q�, and w.r.t. the Jackson q-integral [18]. If q = e#, then since aq|�〉q = �|�〉q, the q-CS manifold

M is a nonNat surface of revolution with q-deformed induced curvature with curvature scalar R =
#212(1 + 2|�|2 + O(#3)). Also, the symplectic 2-form ! is modi;ed by the q-deformation as ! =
{i− (#2=2)|�|2(|�|2 + 2) + O(#3)} d� ∧ d O� [11,14,15].

The density operator (state) % will be used below to determine functionals of some Hopf operator
algebras A, so here we introduce the general concept and give its construction in terms of convex
combinations of projectors of coherent states. Assume a Hilbert vector space H that carries a unitary
irreducible representation of A of ;nite or in;nite dimension. The set

S= {% ∈ End(H): %¿0; %† = %; tr %= 1}; (10)
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namely the set of nonnegative, Hermitian, trace-one operators acting on H form a convex subspace
of End(H), which is the convex hull of the set

SP = {% ∈ S; %2 = %} ≡ H=U (1); (11)

namely of the set of pure density operators (states), that are in one-to-one correspondence with
the state vectors of H. Two kinds of % density operators that will be used in the sequel are
constructed by hw-CS and hwq-CS. Explicitly, from the pure density operators |± �〉〈±�| ∈ SP and
the q-deformed ones |�〉qq〈�| ≡ |�〉〈�|q ∈ SP, we form convex combination belonging to the convex
hull of SP, i.e.

%= p|�〉〈�|+ (1− p)| − �〉〈−�|;
%q = p|�〉〈�|q + (1− p)| − �〉〈−�|q: (12)

4. Appell systems

Classical Appell polynomials [2,3,9,38,43] on the real line are polynomials {hn(x); n ∈ N} of de-
gree n that satisfy the condition (d=dx)hn(x)=nhn(x). A class of such systems is the shifted moment
sequences hn(x)=

∫∞
−∞(x+y)np(dy), for some positive real measure p with ;nite moments. The class

of Appell polynomials includes cases such as the divided sequences, the Bernoulli polynomials and
the Hermite polynomials, which correspond to the Gaussian measure p=p(dy)= (1=

√
2�)e−y2=2 dy.

Some important properties of the Appell polynomial sets that have been investigated are the fol-
lowing: Hermite polynomials are the only Appell polynomials associated to the ordinary derivative
operator that are also orthogonal [2,3,9,38,43]; similarly, Charlier polynomials are the only Ap-
pell systems associated to the di#erence operator that are also orthogonal [2,3,9,38,43] (d), while
the Rogergs q-Hermite polynomials are the only Appell systems associated to the Askey–Wilson
q-derivative operator that are orthogonal too [2,3,9,38,43].

The following Hopf algebraic reformulation of the real line Appell systems (i.e. nonpolynomials
necessarily) motivates their generalization to more general spaces. Let A = R[[X ]] be the algebra
of the real formal power series generated by pointwise multiplication fg(x) = f(x)g(x); f; g ∈
A. Then A becomes a Hopf algebra with comultiplication (�f)(x; y) = f(x + y) and counit
�(id) = 1, �(X ) = 0, where id is the identity function and X (x) = x stands for the coordinate
function. For a given functional � :A → C and a chosen basis (xn); n ∈ Z+ in A, it is easy
to verify that the relation hn(x) = (� ⊗ id) ◦ �xn = T�xn de;nes an Appell system and is equiv-
alent to the preceding de;nition. Speci;cally, for � =

∫∞
−∞ p(dy) with p the Gaussian measure,

we obtain the Hermite polynomials if we make the identi;cations x ⊗ 1 ≡ x and 1 ⊗ x ≡ iy.
This algebraic de;nition has been used extensively to introduce Appell systems in noncommut-
ing algebras [19–22]. Here we will utilize it to de;ne below Appell systems on two important
operator algebras of Quantum Mechanics i.e. the Heisenberg algebra and the q-deformed Heisen-
berg algebra and to show that the resulting operator-valued Appell systems are solutions of quan-
tum master equations that are constructed respectively as limits of random walks de;ned on these
algebras.



346 D. Ellinas / Journal of Computational and Applied Mathematics 133 (2001) 341–353

5. Di�usion on C

Let �(·)=Tr %(·) ≡ 〈%; ·〉, a functional de;ned on the enveloping Heisenberg–Weyl algebra U(hw),
where %=p|�〉〈�|+(1−p)| − �〉〈−�|, i.e. the % density operator is given as a convex sum of pure
state density operators. The action of the transition operator T� = (� ⊗ id) ◦ � on the generating
monomials of U(hw) (where we ignore the numerical factors in the comultiplication of Eq. (2))
reads as

T�((a†)man) = (�⊗ id) ◦ �((a†)man)

=
m∑
i=0

n∑
j=0

(
m
i

)(
n
j

)
[p�∗i�j + (1− p)(−�)i(−�)j](a†)m−ian−j

=p(a† + �∗)m(a+ �)n + (1− p)(a† − �∗)m(a− �)n: (13)

For a general element f(a; a†) ∈ U(hw) that is normally ordered, namely the annihilation operator a
is placed to the right of the creation operator a†, denoted by f̂(a; a†)=

∑
m;n¿0 cmn(a†)man, the action

of the linear operator T� becomes

T�(f̂(a; a†)) = pf̂(a+ �; a† + �∗) + (1− p)f̂(a− �; a† − �∗): (14)

By means of the CS eigenvector property and the normal ordering of the f element, we also compute
the value of functional viz

�(f̂(a; a†)) = pf̂(�; �∗) + (1− p)f̂(−�;−�∗): (15)

Let us consider the displacement operator D� = e�a
†−�∗a which acts with the group adjoint action

on any element f of the U(hw) algebra viz. [27,37]

AdDa(f) = Ade�a
†−�∗a(f) = Adead(�a

†−�∗a)(f) = D�fD†
�; (16)

where ad(X )f=[X; f] and ad(X )ad(X )f=[X; [X; f]] and similarly for higher powers, stands for the
Lie algebra adjoint action that is de;ned in terms of the Lie commutator. Explicitly, the action of the
displacement operator on the generators of U(hw) reads as AdD±�(a)=a∓� and AdD±�(a†)=a†∓�∗.
By means of these expressions, we rewrite the action of the preceding transition operator as

T�(f̂(a; a†)) = [pAdD−� + (1− p)AdD�]f̂: (17)

Next, we want to compute the limiting transition operator

Tt ≡ T�t ≡ lim
n→∞ Tn

�

= lim
n→∞ [p(1 + ad(−�a† + �∗a) + 1

2adad(−�a† + �∗a) + · · ·)

+ (1− p)(1 + ad(�a† − �∗a) + 1
2adad(�a

† − �∗a) + · · · ]n: (18)

If we introduce the parameters t ∈ R and c; . ∈ C by means of the relations,

2�
(
p− 1

2

)
=

tc
n
;

�2

2
=

t.
n
; (19)
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and then take � → 0; n → ∞, with t; c; . ;xed, we use the limit (1 + (Z=n))n → eZ , to arrive at the
limiting Markov operator Tt = etadL, where

L=−ca† + c∗a+ .(a†)2 − .∗a2 − |.|(a†a+ aa†): (20)

By construction Tt is the time evolution operator for any element f of U(hw) i.e. ft = Tt(f)
and forms a continuous semigroup TtTt′ =Tt+t′ under composition. This yields the di#usion equation
obeyed by ft , which will be taken to be normally ordered hereafter. By time derivation of the
equation

�t(f̂) = 〈%;f̂t〉= 〈%; etadLf̂〉= 〈e−tadL†
%;f̂〉= 〈%t;f̂〉; (21)

we obtain the di#usion equation (d=dt)f̂t =Lf̂t , as well as the dual one satis;ed by the % density
operator viz. (d=dt)%t = L†%t . To simplify and eventually solve the ensuing equations, we will
assume here that the parameter . introduced above is a complex variable with random argument of
zero average and constant nonzero magnitude. Then if we average over random . the equations of
motion only the term proportional to the amplitude of . will be retained. If in addition, we consider
the case of a symmetric random walk i.e. p= 1

2 ; c = 0 the equation of motion becomes
d
dt

f̂t =−2|.|[a†f̂ta+ af̂ta
† − Nf̂ −f̂(N + 1)]: (22)

This is a quantum master equation of the Lindblad type [29,30] which will be shown to admit a
solution in terms of an operator-valued Appell system associated with the generator of that equation. 1

We may introduce the following operators [4,5,12]:

K+f = a†fa; K−f = afa†; K0f = 1
2(a

†af + faa†); (23)

and Kcf = [a†a; f]. These operators acting on the elements f of the enveloping algebra U(hw),
generate the su(1; 1) Lie algebra de;ned by the commutation relations

[K−; K+] = 2K0; [K0; K±] =±K±; (24)

where Kc is the central element (Casimir operator) of the algebra. In terms of these operators, the
quantum master equation (22) is cast in the form

d
dt

f̂t =−2|.|(−2K0 + K+ + K−)f̂t : (25)

Use of the disentangling theorem (Baker–Campbell–Hausdor# formula) of a general SU(1; 1) group
element (cf. Appendix A), allows to express the solution of the quantum master equation in the
form

f̂t = exp(A+K+) exp(ln A0K0) exp(A−K−)(f̂) = exp(B−K−) exp(ln B0K0) exp(B+K+)(f̂); (26)

if the normally or, respectively, antinormally ordered BCH decomposition is used. In the above,
f̂ =

∑
mn¿0 cmn(a†)man stands for the initial time operator which can be a general element of the

enveloping algebra U(hw). Speci;cally, in the case of normally ordered decomposition with initial
operator taken as f̂ = (a†)man the solution of the quantum master equation is obtained by means
of the actions issued in Eq. (23) and by the antinormal-to-normal reordering relations among the

1 It should be mentioned that this is a well-known quantum master equation and that its derivation and solution has
been well studied from the mathematical and the physical points of view cf. Refs. [4,5,12,39].
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generators of the U(hw) algebra (cf. Appendix B). An arduous but straightforward calculation yields
the normal ordered solution:

f̂t =exp(A+K+) exp(ln A0K0) exp(A−K−)((a†)sat)

=
∑
k¿0

∑
l¿0

∑
m¿0

min(k; s)∑
i=0

min(k+t−i; k)∑
j=0

l∑
u=0

u∑
v=0

l−u∑
q=0

v∑
w=0

min(q; x)∑
f=0

min(y+q−f;w)∑
h=0

×Ak
−
k!

OA
l
0

l!
Am
+

m!
di

k; sd
j
k+t−i; kd

f
q;xd

h
y+q−f;w

Odl−u;q
Odv;w

1
2l

(
l
u

)(
u
v

)
(a†)x+w+m−f−hay+q+m−f−h; (27)

where x = s + k + q − i − j, y = t + k + w − i − j and OA0 = ln A0, with A0 = 1=(1 − 4|.|t) and
A± =−2|.|t=(1− 2|.|t). A similar solution can be obtained for the antinormal BCH decomposition.
We can therefore state the results in the following.

Proposition 1. The solution of the quantum master equation (d=dt)f̂t =Lf̂t where the generator
L(f̂t)=−2|.|[a†f̂ta+ af̂ta

†−Nf̂−f̂(N +1)] of Lindblad type generates the semigroup of Markov
transition operators Tt = etL acting on the enveloping algebra U(hw); is given by the associated
U(hw)-valued Appell system which in its normally ordered form is given by Eq. (27).

We note also that the dual master equation satis;ed by the density operator can easily be solved
along the above lines in terms of the associated Appell system.

6. q-di�usion

Let ��(·) = Tr %q(·) ≡ 〈%q; ·〉, a functional de;ned on the enveloping q-Heisenberg–Weyl algebra
Uq(hw), where %q=p|�〉〈�|q+(1−p)|−�〉〈−�|q is the % density operator given as a convex sum of
pure state q-density operators. The action of transition operator Tq

� =(�q ⊗ id) ◦� on the monomials
of Uq(hw), with � map given in Eq. (6) reads as

T�q((a
†)mq a

n
q) = (�q ⊗ id) ◦ �((a†)mq a

n
q)

=
m∑
i=0

n∑
j=0

(
m
i

)(
n
j

)
[p�∗i�j + (1− p)(−�)i(−�)j](a†)m−i

q an−j
q

=p(a†q + �∗)m(aq + �)n + (1− p)(a†q − �∗)m(aq − �)n: (28)

On an element f(aq; a†q) of the enveloping algebra Uq(hw) that is normally ordered, namely the
annihilation operator aq is placed to the right of the creation operator a†q, that is expressed as
f̂(aq; a†q) =

∑
m;n¿0 cmn(a†)mq a

n
q, the action of the linear operator T�q becomes

T�q(f̂(aq; a†q)) = pf̂(aq + �; a†q + �∗) + (1− p)f̂(aq − �; a†q − �∗): (29)

By means of the q-CS eigenvector property and the normal ordering of the element f, we also
compute the value of functional viz.

�qf̂(aq; a†q) = pf̂(�q; �∗
q) + (1− p)f̂(−�;−�∗): (30)
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Let us now consider the displacement operator Dq
� = e�A

†
q−�∗aq , which acts with the following

adjoint action on any element f of the Uq(hw) algebra, AdDq
a(f)=Ade�A

†
q−�∗aq(f)=ead(�A

†
q−�∗aq)(f)=

Dq
�fDq

−�. We should emphasize at this point that Dq†
� �= Dq

−�. This is an important di#erence from
the preceding undeformed case with q = 1, which stems from the fact that though Eq. (5) is valid
the two involved operators are not Hermitian conjugate to each other. This fact would not permit us
to proceed with the construction of quantum di#usion equation in a manner analogous to the q= 1
case. Instead here, we will restrict the space of solutions of the resulting q-master equation from the
whole algebra Uq(hw) to the commuting subalgebra generated either by monomials of the creation
operator {(a†)mq ; m ∈ Z+} or of the annihilation operator {am

q ; m ∈ Z+} alone. Notice, however, that
such a choice would be undesirable from the physical point of view since it would not allow us to
study Hermitian solutions of the ensuing master equation.

Then the explicit action of the q-displacement operator on the generators of Uq(hw) reads as
AdDq

±�(aq)= aq ∓ � and AdDq†
∓�(a†q)= a†q ∓ �∗. By means of these expressions, we rewrite the action

of the preceding q-transition operator on an analytic formal power series f(aq) as

T�q(f(aq)) = [pAdDq
−� + (1− p)AdDq

�](f(aq)): (31)

We wish to compute the limiting transition operator

Tq
t ≡ T�q

t
≡ lim

n→∞(T�q)
n

= lim
n→∞ [p(1 + ad(−�A†

q + �∗aq) + 1
2adad(−�A†

q + �∗aq) + · · ·)

+ (1− p)(1 + ad(�A†
q − �∗aq) + 1

2adad(�A
†
q − �∗aq) + · · · ]n: (32)

If we introduce the parameters t ∈ R and c; . ∈ C by means of the same relations (19) as in the
q = 1 case, then we will obtain the limiting q-transition operator Tq

t = etadLq , where Lq = −cA†
q +

c∗aq + .(A†
q)

2 − .∗a2q − |.|(A†
qaq + aqA†

q).
To simplify this q-master equation, we will assume as in the undeformed case that the parameter .

is a complex variable with random argument of zero average and constant nonzero magnitude. Then
if we average over random . the equation of motion then only terms proportional to the amplitude
of . will be retained. If in addition we consider the case of a symmetric random walk i.e. p= 1

2 ; c=0
the equation of motion becomes

d
dt

ft =−2|.|[A†
qfta+ aftA†

q − Nft − ft(N + 1)]: (33)

This is a q-quantum master equation of the Lindblad type [29,30] which will be shown to admit a
solution in terms of an operator-valued Appell system associated with the generator of that equation
[7,13,35]. 2 We may introduce as in the preceding undeformed case the following operators:

K+f = A†
qfaq K−f = aqfA†

q K0f = 1
2(A

†
qaqf + faqA†

q) (34)

2 Our study of this q-deformed master equation will be constrained here to show only the potentialities of the Hopf
algebraic formalism, therefore its physical interpretation as a dissipative dynamical equation or questions such as whether
or not due to q-deformation its dynamics violates the uncertainty principle, or what is the form of the associated Fokker–
Planck equation and how to obtain its stationary solutions, will not be addressed. Also, questions as to the possible
relations of that random walk to others that have been investigated recently, with q-deformed Heisenberg–Weyl algebras
and nonlinear coherent states, cf. [7,35], Ref. [13] will have to be deferred till a next communication.
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and Kcf = [A†
qaq; f]. These operators acting on the elements f of the enveloping algebra Uq(hw),

generate the SU(1; 1) Lie algebra de;ned as in Eq. (24). In terms of these operators, the q-quantum
master equation (33) is cast in the form

d
dt

ft =−2|.|(−2K0 + K+ + K−)ft: (35)

Use of the disentangling theorem (Baker–Campbell–Hausdor# formula) of a general SU(1; 1) group
element (cf. Appendix A), allows to express the solution of the quantum q-master equation in the
form

f̂t = exp(A+K+) exp(ln A0K0) exp(A−K−)(f̂) = exp(B−K−) exp(ln B0K0) exp(B+K+)(f̂); (36)

if the normally or, respectively, the antinormally ordered BCH decomposition is used. In the above
we choose f =

∑
n¿0 cna

n
q, to stand for the initial time operator which can be a general element

of the subalgebra of Uq(hw) that is generated by the q-annihilation operator. Speci;cally, in the
case of normally ordered decomposition with initial operator taken as f = at

q the solution of the
quantum q-master equation is obtained by means of the actions given in Eq. (34). A straightforward
calculation yields the solution:

ft =exp(A+K+) exp(ln A0K0) exp(A−K−)(at)

=
∑
k¿0

∑
l¿0

∑
m¿0

l∑
r=0

Ak
−
k!

OA
l
0

l!
Am
+

m!
1
2m

(
l
r

)
(a†)k+m

q (N + k)l−r(N + k + t + 1)rak+t+m
q ; (37)

where the A’s have the same values as before. A similar solution can be obtained for the antinormal
BCH decomposition. We can therefore state the results in the following.

Proposition 2. The solution of the quantum q-master equation (d=dt)ft=Lqft; where the operator
Lq(ft) =−2|.|[A†

qftaq + aqftA†
q − Nft − ft(N + 1)] of Lindblad type generates the semigroup of

q-Markov transition operators Tq
t = etLq acting on the enveloping algebra Uq(hw); is given by the

associated a†qaq-valued Appell system which is given by Eq. (37).

We note also that the dual q-master equation satis;ed by the density operator can easily be solved
along the above lines in terms of the associated Appell system.

7. Discussion

A novel way for constructing quantum master equations has been provided with solutions given
by certain sets of operator-valued functions that constitute a generalization of the concept of classi-
cal Appell polynomials. This entire approach is algebraic and utilizes concepts and tools from the
powerful structure of Hopf algebra. For that construction a linear functional on the Hopf algebra
is needed. The choice of that functional is determined by projection operators written in terms of
coherent states that span 2D manifolds with nontrivial geometry embedded in the representation
Hilbert space of the underlying algebra; this o#ers a chance to investigate random walks associated
with nontrivial geometries. It would also be an interesting task to appropriately interpret physically
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the resulting quantum master equations as dissipative dynamical equation of a single quantum sys-
tem. In closing, we note that the prospect of such a framework is rich enough to allow for random
walks constructed on e.g. noncommuting spaces with braided=smash structure [16] or on Lie groups,
quantum groups and quantum modules and comodules. The kinds of Appell systems resulting in
those cases might provide new challenges to the theory of special functions. Some of these issues,
however, will be taken up in a forthcoming communication [17].
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Appendix A.

The disentangling theorem (Baker–Campbell–Hausdor# formula) [23] of a general SU(1; 1) group
element [40,44,45] g(a+; a0; a−) in the normal {Ka

+K
b
0K

c
−: a; b; c ∈ Z+}, and antinormal {Ka

−K
b
0K

c
+:

a; b; c ∈ Z+} ordering of the generators of the enveloping algebra U(su(1; 1)) reads, respectively, as

g(a+; a0; a−) = exp(�+K+ + �0K0 + �−K−)

= exp(A+K+) exp(ln A0K0) exp(A−K−);

=exp(B−K−) exp(ln B0K0) exp(B+K+); (38)

where A±(a0) = ((a±=�) sinh�)=(cosh� − (a0=2�) sinh�), A0 = (cosh� − (a0=2�) sinh�)−2 and
B±(a0) =−A±(−a0), B0=(cosh�+(a0=2�) sinh�)2, with �2=((�0=2)2−a+a−). The relation between
the two types of ordered decompositions is based on the formulae A± = (B0B±)=(1 − B0B+B−),
A0 = B0=(1− B0B+B−)2, and B± = A±=(A0 − A+A−), B0 = 1=A0(A0 − A+A−)2.

Appendix B.

Relations among ordered basic monomials of the enveloping algebra U(hw) [26]. From antinormal
to normal ordering:

ai(a†) j =
min(i; j)∑
l=0

dl
i; j(a

†)j−laj−l =
min(i; j)∑
l=0

l!
(

i
l

)(
j
l

)
(a†)j−laj−l: (39)

From number operator to normal ordering:

Nk =
k∑

l=1

ck; l(a†)lal; (40)

where Ock+1; l = Ock; l−1 + l Ock; l, and these coeTcients are recognized as the Stirling numbers of second
kind.
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From number operator to antinormal ordering:

Nk =
k∑

l=1

Odk; lal(a†)l; (41)

where Odk+1; l = Odk; l−1 − (l+ 1) Odk; l, with Od0;0 = 1.
Relations among ordered basic monomials of the enveloping algebra Uq(hw) [26]. From antinormal

to normal ordering:

ai
q(a

†) j
q =

min(i; j)∑
l=0

Ob
l
i; j(a

†)j−l
q aj−l

q =
min(i; j)∑
l=0

ql(l−i−j)+ij[l]!
[
i
l

]
q

[
j
l

]
q

(a†)j−l
q aj−l

q : (42)

We note that for q → 1 the Ob
l
i; j → dl

i; j. From normal to antinormal ordering:

(a†)iaj =
min(i; j)∑
l=0

bl
i; ja

j−l(a†)i−l =
min(i; j)∑
l=0

(−)lql(l−i−j)−ij)[l]!
[
i
l

]
q

[
j
l

]
q

aj−l(a†)i−l: (43)
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