77 research outputs found

    Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems

    Get PDF
    On October 12–13, a workshop funded by the National Science Foundation was held at Iowa State University in Ames, Iowa with a goal of identifying research needs related to coupled economic and biophysical models within the FEW system. Approximately 80 people attended the workshop with about half representing the social sciences (primarily economics) and the rest from the physical and natural sciences. The focus and attendees were chosen so that findings would be particularly relevant to SBE research needs while taking into account the critical connectivity needed between social sciences and other disciplines. We have identified several major gaps in existing scientific knowledge that present substantial impediments to understanding the FEW system. We especially recommend research in these areas as a priority for future funding: 1. Economic models of decision-making in coupled systems Deliberate human activity has been the dominant factor driving environmental and land-use changes for hundreds of years. While economists have made great strides in modeling and understanding these choices, the coupled systems modeling literature, with some important exceptions, has not reflected these contributions. Several paths forward seem fruitful. First, baseline economic models that assume rationality can be used much more widely than they are currently. Moreover, the current generation of IAMs that include rational agents have emphasized partial equilibrium studies appropriate for smaller systems. To allow this approach to be used to study larger systems, the potential for (and consequences of) general equilibrium effects should be studied as well. Second, it is important to address shortcomings in these models of economic decision-making. Valuable improvements could be gained from developing coupled models that draw insights from behavioral economics. Many decision-makers deviate systematically from actions that would be predicted by strict rationality, but very few IAMs incorporate this behavior, potentially leading to inaccurate predictions about the effects of policies and regulations. Improved models of human adaptation and induced technological change can also be incorporated into coupled models. Particularly for medium to long-run models, decisions about adaptation and technological change will have substantial effects on the conclusions and policy implications, but more compelling methods for incorporating these changes into modeling are sorely needed. In addition, some economic decisions are intrinsically dynamic yet few coupled models explicitly incorporate dynamic models. Economic models that address uncertainty in decision making are also underutilized in coupled models of the FEW system. 2. Coupling models across disciplines Despite much recent progress, established models for one component of the FEW system often cannot currently produce outcomes that can be used as inputs for models of other components. This misalignment makes integrated modeling difficult and is especially apparent in linking models of natural phenomena with models of economic decision-making. Economic agents typically act to maximize a form of utility or welfare that is not directly linked to physical processes, and they typically require probabilistic forecasts as an input to their decision-making that many models in the natural sciences cannot directly produce. We believe that an especially promising approach is the development of “bridge” models that convert outputs from one model into inputs for another. Such models can be viewed as application-specific, reduced-form distillations of a richer and more realistic underlying model. Ideally, these bridge models would be developed in collaborative research projects involving economists, statisticians, and disciplinary specialists, and would contribute to improved understanding in the scientific discipline as well. 3. Model validation and comparison There is little clarity on how models should be evaluated and compared to each other, both within individual disciplines and as components of larger IAMs. This challenge makes larger integrated modeling exercises extremely difficult. Some potential ways to advance are by developing statistical criteria that measure model performance along the dimensions suitable for inclusion in an IAM as well as infrastructure and procedures to facilitate model comparisons. Focusing on the models’ out-of-sample distributional forecasting performance, as well as that of the IAM overall, is especially promising and of particular importance. Moreover, applications of IAMs tend to estimate the effect of hypothetical future policy actions, but there have been very few studies that have used these models to estimate the effect of past policy actions. These exercises should be encouraged. They offer a well-understood test bed for the IAMs, and also contribute to fundamental scientific knowledge through better understanding of the episode in question. The retrospective nature of this form of analysis also presents the opportunity to combine reduced-form estimation strategies with the IAMs as an additional method of validation

    Identifying amyloid pathology–related cerebrospinal fluid biomarkers for Alzheimer\u27s disease in a multicohort study

    Get PDF
    Introduction: The dynamic range of cerebrospinal fluid (CSF) amyloid ÎČ (AÎČ1–42) measurement does not parallel to cognitive changes in Alzheimer\u27s disease (AD) and cognitively normal (CN) subjects across different studies. Therefore, identifying novel proteins to characterize symptomatic AD samples is important. Methods: Proteins were profiled using a multianalyte platform by Rules Based Medicine (MAP-RBM). Due to underlying heterogeneity and unbalanced sample size, we combined subjects (344 AD and 325 CN) from three cohorts: Alzheimer\u27s Disease Neuroimaging Initiative, Penn Center for Neurodegenerative Disease Research of the University of Pennsylvania, and Knight Alzheimer\u27s Disease Research Center at Washington University in St. Louis. We focused on samples whose cognitive and amyloid status was consistent. We performed linear regression (accounted for age, gender, number of apolipoprotein E (APOE) e4 alleles, and cohort variable) to identify amyloid-related proteins for symptomatic AD subjects in this largest ever CSF–based MAP-RBM study. ANOVA and Tukey\u27s test were used to evaluate if these proteins were related to cognitive impairment changes as measured by mini-mental state examination (MMSE). Results: Seven proteins were significantly associated with AÎČ1–42 levels in the combined cohort (false discovery rate adjusted P \u3c .05), of which lipoprotein a (Lp(a)), prolactin (PRL), resistin, and vascular endothelial growth factor (VEGF) have consistent direction of associations across every individual cohort. VEGF was strongly associated with MMSE scores, followed by pancreatic polypeptide and immunoglobulin A (IgA), suggesting they may be related to staging of AD. Discussion: Lp(a), PRL, IgA, and tissue factor/thromboplastin have never been reported for AD diagnosis in previous individual CSF–based MAP-RBM studies. Although some of our reported analytes are related to AD pathophysiology, other\u27s roles in symptomatic AD samples worth further explorations

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.Peer reviewe

    Species richness and endemism in the native flora of California.

    No full text
    Premise of the studyCalifornia's vascular flora is the most diverse and threatened in temperate North America. Previous studies of spatial patterns of Californian plant diversity have been limited by traditional metrics, non-uniform geographic units, and distributional data derived from floristic descriptions for only a subset of species.MethodsWe revisited patterns of sampling intensity, species richness, and relative endemism in California based on equal-area spatial units, the full vascular flora, and specimen-based distributional data. We estimated richness, weighted endemism (inverse range-weighting of species), and corrected weighted endemism (weighted endemism corrected for richness), and performed a randomization test for significantly high endemism.Key resultsPossible biases in herbarium data do not obscure patterns of high richness and endemism at the spatial resolution studied. High species richness was sometimes associated with significantly high endemism (e.g., Klamath Ranges) but often not. In Stebbins and Major's (1965) main endemism hotspot, Southwestern California, species richness is high across much of the Peninsular and Transverse ranges but significantly high endemism is mostly localized to the Santa Rosa and San Bernardino mountains. In contrast, species richness is low in the Channel Islands, where endemism is significantly high, as also found for much of the Death Valley region.ConclusionsMeasures of taxonomic richness, even with greater weighting of range-restricted taxa, are insufficient for identifying areas of significantly high endemism that warrant conservation attention. Differences between our findings and those in previous studies appear to mostly reflect the source and scale of distributional data, and recent analytical refinements
    • 

    corecore