1,147 research outputs found

    A Student-Centered Learning Approach to Design for Manufacturability: Meeting the Needs of an Often- Forgotten Customer

    Get PDF
    A hands-on learning module was implemented at Marquette University in 2012 to teach biomedical engineering students about basic manufacturing processes, lean manufacturing principles, and design for manufacturability. It incorporates active and student-centered learning as part of in-class assembly line simulations. Since then, it has evolved from three class periods to five. The module begins with two classroom presentations on manufacturing operations and electronics design, assembly, and testing. Students then participate in an in-class assembly line simulation exercise where they build and test an actual product per written work instructions. They reflect on this experience and suggest design and process changes to improve the assembly line process and quality, save time, and reduce cost and waste. At the end of the module students implement their suggested design and process improvements and repeat the exercise to determine the impact of their improvements. They learn of the importance of Design for Manufacturability, well-written work instructions, process design, and designing a product not only for the end user, but also for the assemblers and inspectors. Details of the module, and its implementation and assessment are presented along with student feedback and faculty observations

    A Hands-On, Active Learning Approach to Increasing Manufacturing Knowledge in Engineering Students

    Get PDF
    This paper describes a new learning module implemented as part of the senior capstone design course at Marquette University to teach engineering students about basic manufacturing processes, lean manufacturing principles, and design for manufacturability. The module includes several examples of active and student centered learning as part of an in-class assembly line simulation exercise. Students reflected on this experience, and suggested process improvements to save time, reduce cost and waste, and improve the assembly line process. They learned of the importance of manufacturing documentation, process design, and design for assembly. At the end of the module, students understood the importance of designing a product not only for the end user, but also for the assemblers and inspectors. Details of the module design and implementation will be presented along with comments from students

    MicroRNAs Modulate Pathogenesis Resulting from Chlamydial Infection in Mice

    Get PDF
    Not all women infected with chlamydiae develop upper genital tract disease, but the reason(s) for this remains undefined. Host genetics and hormonal changes associated with the menstrual cycle are possible explanations for variable infection outcomes. It is also possible that disease severity depends on the virulence of the chlamydial inoculum. It is likely that the inoculum contains multiple genetic variants, differing in virulence. If the virulent variants dominate, then the individual is more likely to develop severe disease. Based on our previous studies, we hypothesized that the relative degree of virulence of a chlamydial population dictates the microRNA (miRNA) expression profile of the host, which, in turn, through regulation of the host inflammatory response, determines disease severity. Thus, we infected C57BL/6 mice with two populations of Chlamydia muridarum, each comprised of multiple genetic variants and differing in virulence: an attenuated strain (NiggA) and a virulent strain (NiggV). NiggA and NiggV elicited upper tract pathology in 54% and 91% of mice, respectively. miRNA expression analysis in NiggV-infected mice showed significant downregulation of miRNAs involved in dampening fibrosis (miR-200b, miR-200b-5p, and 200b-3p miR-200a-3p) and in transcriptional regulation of cytokine responses (miR-148a-3p, miR-152-3p, miR-132, and miR-212) and upregulation of profibrotic miRNAs (miR-142, and miR-147). Downregulated miRNAs were associated with increased expression of interleukin 8 (IL-8), CXCL2, IL-1β, tumor necrosis factor alpha (TNF-α), and IL-6. Infection with NiggV but not NiggA led to decreased expression of Dicer and Ago 2, suggesting that NiggV interaction with host cells inhibits expression of the miRNA biogenesis machinery, leading to increased cytokine expression and pathology

    Comparative Analysis of Tandem Repeats from Hundreds of Species Reveals Unique Insights into Centromere Evolution

    Get PDF
    Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. The assumption that the most abundant tandem repeat is the centromere DNA was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and in length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond ~50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution, including the appearance of higher order repeat structures in which several polymorphic monomers make up a larger repeating unit. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animals and plants. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Syncytiotrophoblast Microvesicles Released from Pre-Eclampsia Placentae Exhibit Increased Tissue Factor Activity

    Get PDF
    Background: Pre-eclampsia is a complication of pregnancy associated with activation of coagulation. It is caused by the placenta, which sheds increased amounts of syncytiotrophoblast microvesicles (STBM) into the maternal circulation. We hypothesized that STBM could contribute to the haemostatic activation observed in pre-eclampsia. Methodology/Principal Findings: STBM were collected by perfusion of the maternal side of placentae from healthy pregnant women and women with pre-eclampsia at caesarean section. Calibrated automated thrombography was used to assess thrombin generation triggered by STBM-borne tissue factor in platelet poor plasma (PPP). No thrombin was detected in PPP alone but the addition of STBM initiated thrombin generation in 14/16 cases. Pre-eclampsia STBM significantly shortened the lag time (LagT, P = 0.01) and time to peak thrombin generation (TTP, P = 0.005) when compared to normal STBM. Blockade of tissue factor eliminated thrombin generation, while inhibition of tissue factor pathway inhibitor significantly shortened LagT (p = 0.01) and TTP (P,0.0001), with a concomitant increase in endogenous thrombin potential. Conclusions/Significance: STBM triggered thrombin generation in normal plasma in a tissue factor dependent manner, indicating that TF activity is expressed by STBM. This is more pronounced in STBM shed from pre-eclampsia placentae. As more STBM are shed in pre-eclampsia these observations give insight into the disordered haemostasis observed in thi

    Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment

    Get PDF
    Peer reviewe

    Cross section measurement of t-channel single top quark production in pp collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore