1,026 research outputs found
Environmental Sensitivity: A Multi-Domain Investigation of its Development in Infancy
Highly sensitive individuals are thought to be disproportionately susceptible to both the risk engendering and development enhancing elements of their environment. If this is so, it seems necessary to hold that sensitivity is a unitary construct, in which markers of sensitivity to stimuli at neural, autonomic, and behavioural levels of analysis moderate the relationship between early social environments and outcomes, for better as well as for worse. The trait of environmental sensitivity (ES) is theorised, through conditional adaptation to enable resource exploitation or risk survival in the developmental context.
This thesis tests four main hypotheses: that measures of ES at different levels of analysis would covary at 6-months and would be evoked by positive and negative stimuli; whether associations between measures at 6-months would endure by 12-months; that indices of sensitivity at 12-months would associate with measures indexing the quality of the developmental environment; that measures indexing ES would moderate the relationship between the environment and outcomes. Neural, autonomic, and behavioural indices of ES were measured in N82 infants at 6-months and 12-months, while concurrently collecting data on the wellbeing and socioeconomic status (SES) of their parents. Levels of infant self-regulation and sustained attention were assessed at 12-months.
Associations between visual and auditory neural sensitivity were found at 6-months but not 12-months. Likewise, measures of positive and negative behavioural reactivity correlated at 6-months but not 12-months. Maternal SES moderated the relationship between negative reactivity at 6-months and positive reactivity at 12-months such that negatively reactive 6-months infants from high SES households were more positively reactive at 12-months. Baseline RSA at 6-months moderated the relationship between maternal anxiety and 12-months self-regulation but was marginally non-significant.
The results are interpreted from the perspective of theories and concepts that have been integrated into a single overarching meta framework of Environmental Sensitivity
Photopatterned Multidomain Gels : Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene-d-sorbitol Derivatives
We report a multicomponent self-assembling system based on 1,3:2,4-dibenzyldene-d-sorbitol (DBS) derivatives which form gels as the pH is lowered in a controlled way. The two DBS gelators are functionalized with carboxylic acids: the first in the 4-position of the aromatic rings (DBS-CO2H), the second having glycine connected through an amide bond and displaying a terminal carboxylic acid (DBS-Gly). Importantly, these two self-assembling DBS-acids have different pKa values, and as such, their self-assembly is triggered at different pHs. Slowly lowering the pH of a mixture of gelators using glucono-d-lactone (GdL) initially triggers assembly of DBS-CO2H, followed by DBS-Gly; a good degree of kinetic self-sorting is achieved. Gel formation can also be triggered in the presence of diphenyliodonium nitrate (DPIN) as a photoacid under UV irradiation. Two-step acidification of a mixture of gelators using (a) GdL and (b) DPIN assembles the two networks sequentially. By combining this approach with a mask during step b, multidomain gels are formed, in which the network based on DBS-Gly is positively patterned into a pre-existing network based on DBS-CO2H. This innovative approach yields spatially resolved multidomain multicomponent gels based on programmable low-molecular-weight gelators, with one network being positively 'written' into another
The development of the relationship between auditory and visual neural sensitivity and autonomic arousal from 6 m to 12 m
The differential sensitivity hypothesis argues that environmental sensitivity has the bivalent effect of predisposing individuals to both the risk-inducing and development-enhancing influences of early social environments. However, the hypothesis requires that this variation in environmental sensitivity be general across domains. In this study, we focused on neural sensitivity and autonomic arousal to test domain generality. Neural sensitivity can be assessed by correlating measures of perceptual sensitivity, as indexed by event-related potentials (ERP) in electrophysiology. The sensitivity of autonomic arousal can be tested via heart rate changes. Domain generality was tested by comparing associations in perceptual sensitivity across auditory and visual domains, and associations between sensitivity in sensory domains and heart rate. We contrasted ERP components in auditory (P3) and visual (P1, N290 and P4) detection-of-difference tasks for N = 68 infants longitudinally at 6 and 12 months of age. Domain generality should produce correlated individual differences in sensitivity across the two modalities, with higher levels of autonomic arousal associating with increased perceptual sensitivity. Having controlled for multiple comparisons, at 6 months of age, the difference in amplitude of the P3 component evoked in response to standard and deviant tones correlated with the difference in amplitude of the P1 N290 and P4 face-sensitive components evoked in response to fearful and neutral faces. However, this correlation was not found at 12 months of age. Similarly, autonomic arousal correlated with neural sensitivity at 6 months but not at 12 months. The results suggest bottom-up neural perceptual sensitivity is domain-general across auditory and visual domains and is related to autonomic arousal at 6 months but not at 12 months of age. We interpret the development of the association of these markers of ES within a neuroconstructivist framework and with respect to the concept of interactive specialisation. By 12 months of age, more experience of visual processing may have led to top-down endogenous attention mechanisms that process visual information in a way that no longer associates with automatic auditory perceptual sensitivity
Influences of environmental stressors on autonomic function in 12-month-old infants: understanding early common pathways to atypical emotion regulation and cognitive performance
Background
Previous research has suggested that children exposed to more early‐life stress show worse mental health outcomes and impaired cognitive performance in later life, but the mechanisms subserving these relationships remain poorly understood.
Method
Using miniaturised microphones and physiological arousal monitors (electrocardiography, heart rate variability and actigraphy), we examined for the first time infants’ autonomic reactions to environmental stressors (noise) in the home environment, in a sample of 82 12‐month‐old infants from mixed demographic backgrounds. The same infants also attended a laboratory testing battery where attention‐ and emotion‐eliciting stimuli were presented. We examined how children's environmental noise exposure levels at home related to their autonomic reactivity and to their behavioural performance in the laboratory.
Results
Individual differences in total noise exposure were independent of other socioeconomic and parenting variables. Children exposed to higher and more rapidly fluctuating environmental noise showed more unstable autonomic arousal patterns overall in home settings. In the laboratory testing battery, this group showed more labile and short‐lived autonomic changes in response to novel attention‐eliciting stimuli, along with reduced visual sustained attention. They also showed increased arousal lability in response to an emotional stressor.
Conclusions
Our results offer new insights into the mechanisms by which environmental noise exposure may confer increased risk of adverse mental health and impaired cognitive performance during later life
Elevated physiological arousal is associated with larger but more variable neural responses to small acoustic change in children during a passive auditory attention task
Little is known of how autonomic arousal relates to neural responsiveness during auditory attention. We presented N = 21 5-7-year-old children with an oddball auditory mismatch paradigm, whilst concurrently measuring heart rate fluctuations. Children with higher mean autonomic arousal, as indexed by higher heart rate (HR) and decreased high-frequency (0.15-0.8 Hz) variability in HR, showed smaller amplitude N250 responses to frequently presented (70%), 500 Hz standard tones. Follow-up analyses showed that the modal evoked response was in fact similar, but accompanied by more large and small amplitude responses and greater variability in peak latency in the high HR group, causing lower averaged responses. Similar patterns were also observed when examining heart rate fluctuations within a testing session, in an analysis that controlled for between-participant differences in mean HR. In addition, we observed larger P150/P3a amplitudes in response to small acoustic contrasts (750 Hz tones) in the high HR group. Responses to large acoustic contrasts (bursts of white noise), however, evoked strong early P3a phase in all children and did not differ by high/low HR. Our findings suggest that elevated physiological arousal may be associated with high variability in auditory ERP responses in young children, along with increased responsiveness to small acoustic changes
Teacher perspectives on language learning psychology
Research into the psychology of language learning has grown exponentially in the last decade, yet, teacher perspectives on the field have been surprisingly absent from this body of research. The present study was designed to address this gap. Drawing on a survey with 311 foreign language teachers working at different school levels in 3 European countries, and on individual, semi-structured interviews with 11 teachers, the study focuses on the psychological aspects of language learning which teachers felt were particularly important in their own settings. In particular, teachers’ beliefs, experiences and teaching strategies were explored. The data also revealed strong interconnections between language learning psychology constructs, differences across contexts, and a perceived link between learner and teacher psychology
Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against rift valley fever virus
Background: Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings: We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance: These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. © 2010 Bhardwaj et al
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus
The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU
- …