149 research outputs found

    Hidden functional relation in Large-N Quark-Monopole system at finite temperature

    Get PDF
    The quark-monopole potential is computed at finite temperature in the context of AdS/CFTAdS/CFT correspondence. It is found that the potential is invariant under g→1/gg \to 1/g and UT→UT/gU_T \to U_T / g. As in the quark-quark case there exists a maximum separation between quark and monopole, and LL-dependence of the potential exhibits a bifurcation behavior. We find a functional relation dEQMReg/dL=[(1/E(1,0)Reg(U0))2+(1/E(0,1)Reg(U0))2]−1/2dE_{QM}^{Reg} / dL = [(1/E_{(1,0)}^{Reg}(U_0))^2 + (1/E_{(0,1)}^{Reg}(U_0))^2]^{-1/2} which is responsible for the bifurcation. The remarkable property of this relation is that it makes a relation between physical quantities defined at the AdSAdS boundary through a quantity defined at the bulk. The physical implication of this relation for the existence of the extra dimension is speculated.Comment: 22 pages, 3 figures, v1 one more reference added v2 version to appear in NP

    Localization properties of the anomalous diffusion phase x tΌx ~ t^{\mu} in the directed trap model and in the Sinai diffusion with bias

    Full text link
    We study the anomalous diffusion phase x tÎŒx ~ t^{\mu} with 0<ÎŒ<10<\mu<1 which exists both in the Sinai diffusion at small bias, and in the related directed trap model presenting a large distribution of trapping time p(τ)∌1/τ1+ÎŒp(\tau) \sim 1/\tau^{1+\mu}. Our starting point is the Real Space Renormalization method in which the whole thermal packet is considered to be in the same renormalized valley at large time : this assumption is exact only in the limit Ό→0\mu \to 0 and corresponds to the Golosov localization. For finite ÎŒ\mu, we thus generalize the usual RSRG method to allow for the spreading of the thermal packet over many renormalized valleys. Our construction allows to compute exact series expansions in ÎŒ\mu of all observables : at order ÎŒn\mu^n, it is sufficient to consider a spreading of the thermal packet onto at most (1+n)(1+n) traps in each sample, and to average with the appropriate measure over the samples. For the directed trap model, we show explicitly up to order ÎŒ2\mu^2 how to recover the diffusion front, the thermal width, and the localization parameter Y2Y_2. We moreover compute the localization parameters YkY_k for arbitrary kk, the correlation function of two particles, and the generating function of thermal cumulants. We then explain how these results apply to the Sinai diffusion with bias, by deriving the quantitative mapping between the large-scale renormalized descriptions of the two models.Comment: 33 pages, 3 eps figure

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy

    Get PDF
    In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1. Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG antibodies and sensory neuropathy, which closely resembles the human disease. These animal models might help to understand the disease mechanism and lead to more specific therapeutic strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be considered as the initial key step for development of disease

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of ΄(1S) and ΄(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The ΄mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb−1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the ΄ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Performance of the CMS Level-1 trigger in proton-proton collisions at √s = 13 TeV

    Get PDF
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13\TeV. During Run 2 (years 2015–2018) the LHC eventually reached a luminosity of 2.1× 1034^{34} cm−2^{-2}s−1^{-1}, almost three times that reached during Run 1 (2009–2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016–2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals
    • 

    corecore