126 research outputs found

    Conceptual understanding of screen media parenting: report of a working group

    Get PDF
    Screen media (television, computers, and videogames) use has been linked to multiple child outcomes, including obesity. Parents can be an important influence on children\u27s screen use. There has been an increase in the number of instruments available to assess parenting in feeding and physical activity contexts, however few measures are available to assess parenting practices regarding children\u27s screen media use. A working group of screen media and parenting researchers convened at the preconference workshop to the 2012 International Society for Behavioral Nutrition and Physical Activity (ISBNPA) annual meeting, “Parenting Measurement: Current Status and Consensus Reports,” to identify and prioritize issues in assessing screen media parenting practices. The group identified that screen media use can pose different risks for children, depending on their age and developmental stage, across physiologic, psychosocial, and development outcomes. With that in mind, a conceptual framework of how parents may influence their child\u27s screen-viewing behaviors was proposed to include the screen media content, context of viewing, and amount viewed. A research agenda was proposed to prioritize a validation of the framework and enhance the ability of researchers to best assess parenting influences across the three domains of content, context and amount of children\u27s screen media use

    Understanding continent-wide variation in vulture ranging behavior to assess feasibility of Vulture Safe Zones in Africa: Challenges and possibilities

    Get PDF
    Protected areas are intended as tools in reducing threats to wildlife and preserving habitat for their long-term population persistence. Studies on ranging behavior provide insight into the utility of protected areas. Vultures are one of the fastest declining groups of birds globally and are popular subjects for telemetry studies, but continent-wide studies are lacking. To address how vultures use space and identify the areas and location of possible vulture safe zones, we assess home range size and their overlap with protected areas by species, age, breeding status, season, and region using a large continent-wide telemetry datasets that includes 163 individuals of three species of threatened Gyps vulture. Immature vultures of all three species had larger home ranges and used a greater area outside of protected areas than breeding and non-breeding adults. Cape vultures had the smallest home range sizes and the lowest level of overlap with protected areas. Rüppell\u27s vultures had larger home range sizes in the wet season, when poisoning may increase due to human-carnivore conflict. Overall, our study suggests challenges for the creation of Vulture Safe Zones to protect African vultures. At a minimum, areas of 24,000 km2 would be needed to protect the entire range of an adult African White-backed vulture and areas of more than 75,000 km2 for wider-ranging Rüppell\u27s vultures. Vulture Safe Zones in Africa would generally need to be larger than existing protected areas, which would require widespread conservation activities outside of protected areas to be successful

    The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65

    Get PDF
    Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B.  In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place.  We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle.  We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells.  This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light.  RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels.  Following a 50–60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity.  Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction.  Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision

    Magnesium nebulization utilization in management of pediatric asthma (MagNUM PA) trial: study protocol for a randomized controlled trial

    Full text link

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447
    corecore