46 research outputs found

    A computationally efficient frequency-domain filtered-X LMS algorithm for virtual microphone

    Get PDF
    The computational complexity of the virtual FXLMS algorithm is higher than that of the conventional FXLMS algorithm. The additional complexity comes from computation of three secondary path transfer functions (as opposed to one) and a transfer function between the physical and the virtual microphones. The order of these transfer functions may be very high in practical situations where the acoustic damping is low. The high computational complexity of the virtual FXLMS algorithm imposes issues like high power consumption, making it difficult to implement the algorithm in battery operated ANC devices such as active headsets. In addition, the operating sampling frequency of the algorithm is limited and this in turn restricts its operation to relatively low frequency applications. In this paper, a new virtual FXLMS algorithm is derived by implementing all of the secondary path transfer functions in the frequency domain. The algorithm is simulated using measured transfer functions in a duct with low acoustic damping. Implementation schemes are proposed for the new frequency-domain virtual FXLMS algorithm, citing its advantages for use as an efficient real-time active noise control algorithm. © 2013 Elsevier Ltd.Debi Prasad Das, Danielle J. Moreau, Ben S.Cazzolat

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Spatially fixed and moving virtual sensing methods for active noise control.

    Get PDF
    Local active noise control systems generate a zone of quiet at the physical error sensor location. While significant attenuation is achieved at the error sensor, local noise control is not without its problems, chiefly that the zone of quiet is generally small and impractically sized. It may be inconvenient to place the error sensor at the desired location of attenuation, such as near an observer’s ear, preventing the small zone of quiet from being centered there. To overcome the problems encountered in local active noise control, virtual acoustic sensors have been developed to shift the zone of quiet away from the physical sensor position to a spatially fixed desired location. The general aim of the research presented in this thesis is to improve and extend the spatially fixed and moving virtual sensing algorithms developed for active noise control thus far and hence increase the scope and application of local active noise control systems. To achieve this research aim, a number of novel spatially fixed and moving virtual sensing algorithms are presented for local active noise control. In this thesis, a spatially fixed virtual sensing technique named the Stochastically Optimal Tonal Diffuse Field (SOTDF) virtual sensing method is developed specifically for use in pure tone diffuse sound fields. The SOTDF virtual sensing method is a fixed gain virtual sensing method that does not require a preliminary identification stage nor models of the complex transfer functions between the error sensors and the sources. SOTDF virtual microphones and virtual energy density sensors that use both pressure and pressure gradient sensors are developed using the SOTDF virtual sensing method. The performance of these SOTDF virtual sensors is investigated in numerical simulations and using experimental measurements made in a reverberation chamber. SOTDF virtual sensors are shown to accurately estimate the pressure and pressure gradient at a virtual location and to effectively shift the zone of quiet away from the physical sensors to the virtual location. In numerically simulated and post-processed experimental control, both virtual microphones and virtual energy density sensors achieve higher attenuation at the virtual location than conventional control strategies employing their physical counterpart. As it is likely that the desired location of attenuation is not spatially fixed, a number of moving virtual sensing algorithms are also developed in this thesis. These moving virtual sensing algorithms generate a virtual microphone that tracks the desired location of attenuation as it moves through a three-dimensional sound field. To determine the level of attenuation that can be expected at the ear of a seated observer in practice, the performance of the moving virtual sensing algorithms in generating a moving zone of quiet at the single ear of a rotating artificial head is investigated in real-time experiments conducted in a modally dense three dimensional cavity. Results of real-time experiments demonstrate that moving virtual sensors provide improved attenuation at the moving virtual location compared to either fixed virtual sensors or fixed physical sensors. As an acoustic energy density cost function spatially extends the zone of quiet generated at the sensor location, a fixed three-dimensional virtual acoustic energy density sensing method is also developed for use in a modally dense three-dimensional sound field. The size of the localised zone of quiet achieved by minimising either the acoustic energy density or the squared pressure at the virtual location with the active noise control system is compared in real-time experiments conduced in a modally dense three-dimensional cavity. Experimental results demonstrate that minimising the virtual acoustic energy density provides improved attenuation in the sound field and a larger 10 dB zone of quiet at the virtual location than virtual microphones.Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 201

    On the aeroacoustic tonal noise generation mechanism of a sharp-edged plate

    No full text
    This letter presents an experimental study on the tonal noise generated by a sharp-edged flat plate at low-to-moderate Reynolds number. Flow and far-field noise data reveal that, in this particular case, the tonal noise appears to be governed by vortex shedding processes. Also related to the existence of the tonal noise is a region of separated flow slightly upstream of the trailing edge. Hydrodynamic fluctuations at selected vortex shedding frequencies are strongly amplified by the inflectional mean velocity profile in the separated shear layer. The amplified hydrodynamic fluctuations are diffracted by the trailing edge, producing strong tonal noise.Danielle J. Moreau, Laura A. Brooks, and Con J. Doola
    corecore