77 research outputs found

    Extreme isotopologue disequilibrium in molecular SIMS species during SHRIMP geochronology

    Get PDF
    The current limitation in the accuracy and precision of inter-element analysis in secondary ion mass spectrometry (SIMS) is the ability to find measurable quantities that allow relative differences in ionization and transmission efficiency of secondary ions to be normalized. In uraniumthorium- lead geochronology, the ability to make these corrections, or "calibrate" the data, results in an accuracy limit of approximately 1 %. This study looks at the ionization of uranium and thorium oxide species, which are traditionally used in U-Pb calibration, to explore the conditions under which isotopologues, or molecular species whose composition differs only in the isotopic composition of one or more atoms in the molecule, remain in or deviate from equilibrium. Isotopologue deficits of up to 0.2 (200 %) below ideal mixing are observed in UO2+ species during SIMS gechronological analyses using the SHRIMP IIe SIMS instrument. These are identified by bombarding natural U-bearing minerals with an O-18(2)- primary beam. The large anomalies are associated with repeat analyses down a single SIMS sputtering crater (Compston et al., 1984), analysis of high-uranium, radiation-damaged zircon, and analysis of baddeleyite. Analysis of zircon under routine conditions yield UO2+ isotopologue anomalies generally within a few percent of equilibrium. The conditions under which the isotopologue anomalies are observed are also conditions in which the UOx-based corrections, or calibration, for relative U vs. Pb ionization efficiencies fail. The existence of these isotopologue anomalies suggest that failure of the various UOx species to equilibrate with each other is the reason that none of them will successfully correct the U/Pb ratio. No simple isotopologue-based correction is apparent. However, isotopologue disequilibrium appears to be a more sensitive tool for detecting high-U calibration breakdowns than Raman spectroscopy, which showed sharper peaks for similar to 37 Ma high-uranium zircons than for reference zircons OG1 and Temora. U-ThSm He ages were determined for aliquots of reference zircons OG1 (755 +/- 71 Ma) and Temora (323 +/- 43 Ma), suggesting that the broader Raman lines for the Temora reference zircons may be due to something other than accumulated radiation damage. Isotopologue abundances for UO2+ and ThO2+ and their energy spectra are consistent with most or all molecular species being the product of atomic recombination when the primary beam impact energy is greater than 5.7 keV. This, in addition to the large UO2+ instrumentally generated isotopologue disequilibria, suggests that any attempts to use SIMS to detect naturally occurring isotopologue deviations could be tricky.We thank Trevor Ireland, Michael Wingate, and Yuri Kostitsyn for the loan of samples; Simon Bodorkos for help with the SQUID data reduction software, Patrick Burke for SHRIMP technical assistance; Chris May (TSW Analytical) for help with the solution ICP-MS work; and the management of Australian Scientific Instruments for allowing the publication of this in-house research. Martin Danišík was supported by the AuScope NCRIS2 programme, Australian Scientific Instruments Pty Ltd., Australian Research Council (ARC) Discovery funding scheme (DP160102427), and Curtin Research Fellowship. We thank Kenji Horie and Trevor Ireland for constructive review

    Low-Temperature Thermochronology of the Chatkal-Kurama Terrane (Uzbekistan-Tajikistan): Insights Into the Meso-Cenozoic Thermal History of the Western Tian Shan

    Get PDF
    The Chatkal-Kurama terrane represents a key region in understanding the tectonic evolution of the western Tian Shan. In this contribution, we present new thermochronological data (zircon [U-Th-Sm]/He, apatite fission track, and apatite [U-Th-Sm]/He) and the associated thermal history models for 30 igneous samples from the Chatkal-Kurama terrane within Uzbekistan and Tajikistan (west of the Talas-Fergana Fault) and integrate our data with published data from the central Tian Shan (east of the Talas-Fergana Fault). The Chatkal-Kurama terrane experienced a phase of rapid cooling during the Triassic-Jurassic at ca. 225–190 Ma, which we interpret as a far-field response to the closure of the Palaeo-Asian Ocean or the accretion of the Qiangtang terrane on to the Eurasian margin. In the Late Jurassic to the Early Cretaceous, the Chatkal-Kurama terrane experienced a period of tectonic stability and denudation, before transitioning into a period of marine incursions of the Paratethys Sea. In contrast, fast cooling is recorded for the Kyrgyz central Tian Shan to the east of the Talas-Fergana Fault. The differing thermal histories at either side of the Talas-Fergana Fault suggest that the fault induced a topographic divide during the Late Jurassic-Early Cretaceous, with high relief in the east (Kyrgyz Tian Shan) and low relief to the west (Uzbek-Tajik Tian Shan). Finally, the Chatkal-Kurama terrane experienced renewed tectonic activity since ca. 30 Ma, related with the distant India-Eurasia collision and Pamir indentation. The Cenozoic reactivation induced crustal tilting of the Chatkal-Kurama terrane, progressively exposing deeper rocks to the southwest

    Eo-Alpine metamorphism and the ‘mid-Miocene thermal event’ in the Western Carpathians (Slovakia): New evidence from multiple thermochronology

    Get PDF
    A combination of zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th)/He (AHe) dating methods is applied to constrain the metamorphic and exhumation history of the Tatric part of the Branisko Mountains in the Western Carpathians. ZHe ages from the basement samples prove the basement experienced a very low-grade to low-grade Eo-Alpine metamorphic overprint in mid-Cretaceous times. Miocene AFT and AHe ages found in the basement and in the Palaeogene sediments conclusively demonstrate that the Branisko Mts experienced a ‘mid-Miocene thermal event’. This thermal event had a regional character and was related to magmatic and/or burial heating that exposed the sediment and basement samples to ~ 120–130°C and ~ 100–190°C, respectively

    Multi-technique geochronology of intrusive and explosive activity on Piton des Neiges Volcano, Réunion Island

    Get PDF
    MD was supported by the AuScope NCRIS2 program, Australian Research Council (ARC) Discovery funding scheme (DP160102427) and Curtin Research Fellowship. CP was supported by the company Austral Energy and by the ANRT CIFRE program (agreement n°2017/1175).The construction of ocean island basaltic volcanoes consists of a succession of eruptions, intrusions, and metamorphism. These events are often temporally ill-constrained because the most widely used radiometric dating methods applicable to mafic volcanic rocks (K-Ar or 40Ar/39Ar on whole rock or groundmass) are prone to inaccuracy when applied to slowly-cooled, altered, or vesicular and aphyric products. Here we adopt a multi-technique geochronology approach (including zircon U-Pb, phlogopite 40Ar/39Ar, zircon and apatite (U-Th)/He, and zircon double-dating) to demonstrate its efficacy when applied to basaltic volcanoes. Taking the main volcano of Réunion Island (Piton des Neiges) as a case study, we establish the time of the major plutonic, metamorphic, and explosive events that had resisted previous dating attempts. We document four stages of pluton emplacement and metamorphism at 2200 - 2000 ka, 1414 ± 8 ka, 665 ± 78 ka, and 150 - 110 ka, all coinciding with volcanism revival after quiescent intervals. We also date a major Plinian eruption at 188.2 ± 10.4 ka, coeval with the formation age of a large caldera, and, finally, we constrain the last eruption of Piton des Neiges to 27 ka, revising a previous estimate of 12 ka. By resolving several conundrums of Réunion's geological history, our multi-technique geochronology approach reveals that endogenous growth of a volcanic island proceeds as pulses at the beginning of renewed volcanism. We also demonstrate that cross-checking eruptions ages by diversified dating techniques is important to better assess the timing and recurrence of basaltic volcanic activity, with implications for hazard prediction.Publisher PDFPeer reviewe

    Multiple low-temperature thermochronology constraints on exhumation of the Tatra Mountains: New implication for the complex evolution of the Western Carpathians in the Cenozoic

    Get PDF
    The tectonothermal evolution of the highest mountain range in the Carpathian arc—the Tatra Mountains— is investigated by zircon and apatite fission track and zircon (U-Th)/He (ZHe) dating methods in order to unravel the disputed exhumation and geodynamic processes in the Western Carpathians. Our data in combination with geological evidences reveal a complex Cenozoic history, with four major tectonothermal events: (i) a very low grade metamorphism of the crystalline basement at temperatures >240°C due to tectonic burial during the Eo-Alpine collision in the Late Cretaceous (~80 Ma); (ii) exhumation and cooling of the basement to temperatures 150°C after burial to 5–9 km depths by the Paleogene fore-arc basin; (iv) final exhumation of the segmented basement blocks during Oligocene-Miocene (32–11 Ma) owing to lateral extrusion of the North Pannonian plate and its collision with the European foreland. The spatial pattern of thermochronological data suggests asymmetric exhumation of the Tatra Mountains, beginning in the northwest at ~30–20 Ma with low cooling rates (~1–5°C/Ma) and propagating toward the major fault bounding the range in the south, where the youngest cooling ages (16–9 Ma) and fastest cooling rates (~10–20°C/Ma) are found. Our data prove that the Tatra Mountains shared Cenozoic evolution of other crystalline core mountains in the Western Carpathians. However, the Miocene ZHe ages suggest that the Tatra Mountains were buried to the greatest depths in the Paleogene-Early Miocene and experienced the greatest amount of Miocene exhumation

    Zircon double-dating, trace element and O isotope analysis to decipher late Pleistocene explosive-effusive eruptions from a zoned ocean-island magma system, Ascension Island

    Get PDF
    In this first detailed study of zircon from Ascension Island, South Atlantic, we take a novel approach combining trace element and O isotope compositional data with double-dating (disequilibrium 238U–230Th and (U–Th)/He) to decipher timescales and dynamics of magmatic processes. The Echo Canyon (EC) sequence comprises small-volume explosive-effusive eruptions of trachyte that tapped a compositionally zoned magma system. Associated volcanic hazards may be constrained from the age of volcanism, duration of magma storage, and magma source and plumbing system character. Zircon U–Th–Pb dating of lithic lava clasts has revealed recurrent evolved volcanism at 1.34 and 0.6 Ma, and 95 ka. The (U–Th)/He zircon cooling ages indicate that most of the EC explosive-effusive sequence erupted in a brief episode at ca. 95 ka. Additionally, uniform 238U–230Th zircon crystallisation ages suggest moderately protracted magma storage with melt present at depth for at most 103–104 years before eruption. The enriched character of zircon trace element compositions, relative to MORB, in the absence of a continental crustal signature in the oxygen isotope values (δ18O range 2.67–5.63‰), suggests the presence of an enriched component in the EC magma source. Furthermore, low δ18O zircon compositions imply assimilation of high temperature hydrothermally altered country rock by the source magma. The mineral assemblage in crystal-poor pumices indicates equilibrium storage conditions: zircon saturation and Ti-in-zircon crystallisation temperatures are consistent with alkali feldspar-melt temperatures. Significantly, zircon crystals were preserved both as macrocryst inclusions and in the groundmass of EC explosive and effusive deposits. These rocks preserve evidence of magma evolution by fractional crystallisation. This process led to pre-eruptive compositional stratification, which is evidenced in the range of whole-rock major and trace element compositions and zircon Zr/Hf values. Notably, zircon crystallisation and cooling ages derived from pumice, lava, and accidental lithic lava clasts in highly explosive pyroclastic deposits, have revealed episodes of evolved magmatism that would otherwise have gone undetected. In addition, the zircon trace element and isotope compositions, in combination with the range of crystallisation ages, evidence progressively deeper tapping of less evolved magma stored in discrete lenses. Thus, a combined zircon geochronological-geochemical approach can place constraints on the ca. 0.6 Ma recurrence of past explosive-effusive pulses of millennial to decamillennial duration and their enriched magma sources. This information is relevant for assessing hazards and informing monitoring and forecasting efforts to assist in managing associated risks for small ocean island volcanoes with particularly vulnerable populations and infrastructure

    Constraining long-term denudation and faulting history in intraplate regions by multisystem thermochronology: An example of the Sudetic Marginal Fault (Bohemian Massif, central Europe)

    Get PDF
    The Rychlebské hory Mountain region in the Sudetes (NE Bohemian Massif) provides a natural laboratory for studies of postorogenic landscape evolution. This work reveals both the exhumation history of the region and the paleoactivity along the Sudetic Marginal Fault (SMF) using zircon (U-Th)/He (ZHe), apatite fission track (AFT), and apatite (U-Th)/He (AHe) dating of crystalline basement and postorogenic sedimentary samples. Most significantly, and in direct contradiction of traditional paleogeographic reconstructions, this work has found evidence of a large Cretaceous sea and regional burial (to >6.5 km) of the Carboniferous-Permian basement in the Late Cretaceous (~95–80 Ma). During the burial by sediments of the Bohemian Cretaceous Basin System, the SMF acted as a normal fault as documented by offset ZHe ages across the fault. At 85–70 Ma, the basin was inverted, Cretaceous strata eroded, and basement blocks were exhumed to the near surface at a rate of ~300 m/Ma as evidenced by Late Cretaceous–Paleocene AFT ages and thermal modeling results. There is no appreciable difference in AFT and AHe ages across the fault, suggesting that the SMF acted as a reverse fault during exhumation. In the late Eocene–Oligocene, the basement was locally heated to <70°C by magmatic activity related to opening of the Eger rift system. Neogene or younger thermal activity was not recorded in the thermochronological data, confirming that late Cenozoic uplift and erosion of the basement blocks was limited to less than ∼1.5 km in the study area

    Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica)

    Get PDF
    Since the first discovery of ultrahigh pressure (UHP) rocks 30 years ago in the Western Alps, the mechanisms for exhumation of (U)HP terranes worldwide are still debated. In the western Mediterranean, the presently accepted model of synconvergent exhumation (e.g., the channel-flow model) is in conflict with parts of the geologic record. We synthesize regional geologic data and present alternative exhumation mechanisms that consider the role of divergence within subduction zones. These mechanisms, i.e., (i) the motion of the upper plate away from the trench and (ii) the rollback of the lower plate, are discussed in detail with particular reference to the Cenozoic Adria-Europe plate boundary, and along three different transects (Western Alps, Calabria-Sardinia, and Corsica-Northern Apennines). In the Western Alps, (U)HP rocks were exhumed from the greatest depth at the rear of the accretionary wedge during motion of the upper plate away from the trench. Exhumation was extremely fast, and associated with very low geothermal gradients. In Calabria, HP rocks were exhumed from shallower depths and at lower rates during rollback of the Adriatic plate, with repeated exhumation pulses progressively younging toward the foreland. Both mechanisms were active to create boundary divergence along the Corsica-Northern Apennines transect, where European southeastward subduction was progressively replaced along strike by Adriatic northwestward subduction. The tectonic scenario depicted for the Western Alps trench during Eocene exhumation of (U)HP rocks correlates well with present-day eastern Papua New Guinea, which is presented as a modern analog of the Paleogene Adria-Europe plate boundary
    corecore