616 research outputs found

    The Chromatoid body entourage: Molecular characterization of the Chromatoid body‐associated cytoplasmic vesicles

    Get PDF
    Spermatogenesis is a unique process compared to cell differentiation in somatic tissues. Germ cells undergo a considerable number of metabolic and morphological changes during their differentiation: they initially proliferate by mitosis to increase in number; at some point they scramble their genetic material by meiosis, to create new genetic combinations that are the basis for evolution through natural selection and, finally, they change their shape and produce specialized structures characteristic of the mature sperm. Germ cells display an astonishingly broad transcription of their genome compared to differentiated somatic cells. Moreover, the different RNAs need to be specifically regulated in space and time for sperm production to occur appropriately. Different proteins localized in specific subcellular compartments, along with regulatory small RNAs, have an essential role in the proper execution of the different steps of spermatogenesis. These ribonucleoprotein granules interact with cytoplasmic vesicles and organelles to accomplish their role during sperm development. In this study, we characterized the most prominent ribonucleoprotein granule found in germ cells, the Chromatoid body (CB). For the first time we investigated the interaction of the CB with the cytoplasmic vesicles that surround it. These studies directed us to the description of Retromer proteins in germ cells and their involvement with the CB and the acrosome formation. Moreover, we discovered the interplay between the CB and the lysosome system in haploid round spermatids, and identified FYCO1, a new protein central to this interaction. Our results suggest that the vesicular transport system participates in the CB-mediated RNA regulation during sperm development.Siirretty Doriast

    Intermitochondrial cement (IMC) harbors piRNA biogenesis machinery and exonuclease domain-containing proteins EXD1 and EXD2 in mouse spermatocytes

    Get PDF
    Background Germ granules are large cytoplasmic ribonucleoprotein complexes that emerge in the germline to participate in RNA regulation. The two most prominent germ granules are the intermitochondrial cement (IMC) in meiotic spermatocytes and the chromatoid body (CB) in haploid round spermatids, both functionally linked to the PIWI-interacting RNA (piRNA) pathway. Aims In this study, we clarified the IMC function by identifying proteins that form complexes with a well-known IMC protein PIWIL2/MILI in the mouse testis. Results The PIWIL2 interactome included several proteins with known functions in piRNA biogenesis. We further characterized the expression and localization of two of the identified proteins, Exonuclease 3′–5′ domain-containing proteins EXD1 and EXD2, and confirmed their localization to the IMC. We showed that EXD2 interacts with PIWIL2, and that the mutation of Exd2 exonuclease domain in mice induces misregulation of piRNA levels originating from specific pachytene piRNA clusters, but does not disrupt male fertility. Conclusion Altogether, this study highlights the central role of the IMC as a platform for piRNA biogenesis, and suggests that EXD1 and EXD2 function in the IMC-mediated RNA regulation in postnatal male germ cells.We would like to thank all Kotaja lab members for their support and help. The Turku BioScience Cell Imaging and Proteomics Core Facilities are acknowledged for their services and Turku Center for Disease Modeling (TCDM) and Turku Central Animal Facility for providing expertise on animal experimentation. This study was supported by the Academy of Finland, the Sigrid Jusélius Foundation, the Novo Nordisk Foundation, the Jalmari and Rauha Ahokas Foundation, Turku Doctoral Programme of Molecular Medicine (TuDMM), and the Finnish Cultural Foundation

    Mucosal Injury during Anti-Cancer Treatment: From Pathobiology to Bedside

    Get PDF
    Mucositis is one of the most common debilitating side effects related to chemotherapy (CT), radiation therapy (RT), targeted agents and immunotherapy. It is a complex process potentially involving any portion of the gastrointestinal tract and injuring the mucosa, leading to inflammatory or ulcerative lesions. Mechanisms and clinical presentation can differ according both to the anatomic site involved (oral or gastrointestinal) and the treatment received. Understanding the pathophysiology and management of mucosal injury as a secondary effect of anti-cancer treatment is an important area of clinical research. Prophylaxis, early diagnosis, and adequate management of complications are essential to increase therapeutic success and, thus, improve the survival outcomes of cancer patients. This review focuses on the pathobiology and management guidelines for mucositis, a secondary effect of old and new anti-cancer treatments, highlighting recent advances in prevention and discussing future research options

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    corecore