186 research outputs found
Templated Formation of Luminescent Virus-like Particles by Tailor-Made Pt(II) Amphiphiles
Virus-like particles (VLPs) have been created from luminescent Pt(II) complex amphiphiles, able to form supramolecular structures in water solutions, that can be encapsulated or act as templates of cowpea chlorotic mottle virus capsid proteins. By virtue of a bottom-up molecular design, icosahedral and nonicosahedral (rod-like) VLPs have been constructed through diverse pathways, and a relationship between the molecular structure of the complexes and the shape and size of the VLPs has been observed. A deep insight into the mechanism for the templated formation of the differently shaped VLPs was achieved, by electron microscopy measurements (TEM and STEM) and bulk analysis (FPLC, DLS, photophysical investigations). Interestingly, the obtained VLPs can be visualized by their intense emission at room temperature, generated by the self-assembly of the Pt(II) complexes. The encapsulation of the luminescent species is further verified by their higher emission quantum yields inside the VLPs, which is due to the confinement effect of the protein cage. These hybrid materials demonstrate the potential of tailor-made supramolecular systems able to control the assembly of biological building blocks.</p
Uncertain Climate Policy and the Green Paradox
Unintended consequences of announcing a climate policy well in advance of its implementation have been studied in a variety of situations. We show that a phenomenon akin to the so-called “Green-Paradox” holds also when the policy implementation date is uncertain. Governments are compelled, by international and domestic pressure, to demonstrate an intention to reduce greenhouse gas emissions. Taking actual steps, such as imposing a carbon tax on fossil energy, is a different matter altogether and depends on a host of political considerations. As a result, economic agents often consider the policy implementation date to be uncertain. We show that in the interim period between the policy announcement and its actual implementation the emission of green-house gases increases vis-à-vis business-as-usual
Altering α-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism
BACKGROUND: The envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV) can efficiently pseudotype lentiviral vectors. Some strains of LCMV exploit high affinity interactions with α-dystroglycan (α-DG) to bind to cell surfaces and subsequently fuse in low pH endosomes. LCMV strains with low α-DG affinity utilize an unknown receptor and display unique tissue tropisms. We pseudotyped non-primate feline immunodeficiency virus (FIV) vectors using LCMV derived glycoproteins with high or low affinity to α-DG and evaluated their properties in vitro and in vivo.
METHODS: We pseudotyped FIV with the LCMV WE54 strain envelope glycoprotein and also engineered a point mutation in the WE54 envelope glycoprotein (L260F) to diminish α-DG affinity and direct binding to alternate receptors. We hypothesized that this change would alter in vivo tissue tropism and enhance gene transfer to neonatal animals.
RESULTS: In mice, hepatic α- and β-DG expression was greatest at the late gestational and neonatal time points. When displayed on the surface of the FIV lentivirus the WE54 L260F mutant glycoprotein bound weakly to immobilized α-DG. Additionally, LCMV WE54 pseudotyped FIV vector transduction was neutralized by pre-incubation with soluble α-DG, while the mutant glycoprotein pseudotyped vector was not. In vivo gene transfer in adult mice with either envelope yielded low transduction efficiencies in hepatocytes following intravenous delivery. In marked contrast, neonatal gene transfer with the LCMV envelopes, and notably with the FIV-L260F vector, conferred abundant liver and lower level cardiomyocyte transduction as detected by luciferase assays, bioluminescent imaging, and β-galactosidase staining.
CONCLUSIONS: These results suggest that a developmentally regulated receptor for LCMV is expressed abundantly in neonatal mice. LCMV pseudotyped vectors may have applications for neonatal gene transfer.
ABBREVIATIONS: Armstrong 53b (Arm53b); baculovirus Autographa californica GP64 (GP64); charge-coupled device (CCD); dystroglycan (DG); feline immunodeficiency virus (FIV); glycoprotein precursor (GP-C); firefly luciferase (Luc); lymphocytic choriomeningitis virus (LCMV); nuclear targeted β-galactosidase (ntLacZ); optical density (OD); PBS/0.1% (w/v) Tween-20 (PBST); relative light units (RLU); Rous sarcoma virus (RSV); transducing units per milliliter (TU/ml); vesicular stomatitis virus (VSV-G); wheat germ agglutinin (WGA); 50% reduction in binding (C50)
Altering α-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism
BACKGROUND: The envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV) can efficiently pseudotype lentiviral vectors. Some strains of LCMV exploit high affinity interactions with α-dystroglycan (α-DG) to bind to cell surfaces and subsequently fuse in low pH endosomes. LCMV strains with low α-DG affinity utilize an unknown receptor and display unique tissue tropisms. We pseudotyped non-primate feline immunodeficiency virus (FIV) vectors using LCMV derived glycoproteins with high or low affinity to α-DG and evaluated their properties in vitro and in vivo.
METHODS: We pseudotyped FIV with the LCMV WE54 strain envelope glycoprotein and also engineered a point mutation in the WE54 envelope glycoprotein (L260F) to diminish α-DG affinity and direct binding to alternate receptors. We hypothesized that this change would alter in vivo tissue tropism and enhance gene transfer to neonatal animals.
RESULTS: In mice, hepatic α- and β-DG expression was greatest at the late gestational and neonatal time points. When displayed on the surface of the FIV lentivirus the WE54 L260F mutant glycoprotein bound weakly to immobilized α-DG. Additionally, LCMV WE54 pseudotyped FIV vector transduction was neutralized by pre-incubation with soluble α-DG, while the mutant glycoprotein pseudotyped vector was not. In vivo gene transfer in adult mice with either envelope yielded low transduction efficiencies in hepatocytes following intravenous delivery. In marked contrast, neonatal gene transfer with the LCMV envelopes, and notably with the FIV-L260F vector, conferred abundant liver and lower level cardiomyocyte transduction as detected by luciferase assays, bioluminescent imaging, and β-galactosidase staining.
CONCLUSIONS: These results suggest that a developmentally regulated receptor for LCMV is expressed abundantly in neonatal mice. LCMV pseudotyped vectors may have applications for neonatal gene transfer.
ABBREVIATIONS: Armstrong 53b (Arm53b); baculovirus Autographa californica GP64 (GP64); charge-coupled device (CCD); dystroglycan (DG); feline immunodeficiency virus (FIV); glycoprotein precursor (GP-C); firefly luciferase (Luc); lymphocytic choriomeningitis virus (LCMV); nuclear targeted β-galactosidase (ntLacZ); optical density (OD); PBS/0.1% (w/v) Tween-20 (PBST); relative light units (RLU); Rous sarcoma virus (RSV); transducing units per milliliter (TU/ml); vesicular stomatitis virus (VSV-G); wheat germ agglutinin (WGA); 50% reduction in binding (C50)
Gene and cell therapy for cystic fibrosis: From bench to bedside
Clinical trials in cystic fibrosis (CF) patients established proof-of-principle for transfer of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelial cells. However, the limited efficacy of gene transfer vectors as well as extra- and intracellular barriers have prevented the development of a gene therapy-based treatment for CF. Here, we review the use of new viral and nonviral gene therapy vectors, as well as human artificial chromosomes, to overcome barriers to successful CFTR expression. Pre-clinical studies will surely benefit from novel animal models, such as CF pigs and ferrets. Prenatal gene therapy is a potential alternative to gene transfer to fully developed lungs. However, unresolved issues, including the possibility of adverse effects on pre- and postnatal development, the risk of initiating oncogenic or degenerative processes and germ line transmission require further investigation. Finally, we discuss the therapeutic potential of stem cells for CF lung disease. (C) 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved
The Digestive Tract of Cephalopods: Toward Non-invasive In vivo Monitoring of Its Physiology
Ensuring the health and welfare of animals in research is paramount, and the normal
functioning of the digestive tract is essential for both. Here we critically assess non- or
minimally-invasive techniques which may be used to assess a cephalopod’s digestive
tract functionality to inform health monitoring. We focus on: (i) predatory response as an
indication of appetitive drive; (ii) body weight assessment and interpretation of deviations
(e.g., digestive gland weight loss is disproportionate to body weight loss in starvation);
(iii) oro-anal transit time requiring novel, standardized techniques to facilitate comparative
studies of species and diets; (iv) defecation frequency and analysis of fecal color (diet
dependent) and composition (parasites, biomarkers, and cytology); (v) digestive tract
endoscopy, but passage of the esophagus through the brain is a technical challenge;
(vi) high resolution ultrasound that offers the possibility of imaging the morphology of the
digestive tract (e.g., food distribution, indigestible residues, obstruction) and recording
contractile activity; (vii) needle biopsy (with ultrasound guidance) as a technique for
investigating digestive gland biochemistry and pathology without the death of the animal.
These techniques will inform the development of physiologically based assessments of
health and the impact of experimental procedures. Although intended for use in the
laboratory they are equally applicable to cephalopods in public display and aquaculture.En prens
Superconducting undulator activities at the European X-ray Free-Electron Laser Facility
For more than 5 years, superconducting undulators (SCUs) have been successfully delivering X-rays in storage rings. The European X-Ray Free-Electron Laser Facility (XFEL) plans to demonstrate the operation of SCUs in X-ray free-electron lasers (FELs). For the same geometry, SCUs can reach a higher peak field on the axis with respect to all other available technologies, offering a larger photon energy tunability range. The application of short-period SCUs in a high electron beam energy FEL > 11 GeV will enable lasing at very hard X-rays > 40 keV. The large tunability range of SCUs will allow covering the complete photon energy range of the soft X-ray experiments at the European XFEL without changing electron beam energy, as currently needed with the installed permanent magnet undulators. For a possible continuous-wave (CW) upgrade under discussion at the European XFEL with a lower electron beam energy of approximately 7–8 GeV, SCUs can provide the same photon energy range as available at present with the permanent magnet undulators and electron energies. This paper will describe the potential of SCUs for X-ray FELs. In particular, it will focus on the different activities ongoing at the European XFEL and in collaboration with DESY to allow the implementation of SCUs in the European XFEL in the upcoming years
Recent research on changes in genomic regulation and protein expression in intracerebral haemorrhage
Intracerebral haemorrhage (ICH) is a devastating form of stroke that accounts for roughly 10% of all strokes and the effects on those that survive are often debilitating. To date, no suitable therapy exists. Recent work has examined alterations in gene and protein expression after ICH. The focus of this review is to outline the current knowledge of changes in genetic and protein expression after ICH and how those changes may affect the course of brain injury. Both animal and human data are reviewed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73607/1/j.1747-4949.2007.00160.x.pd
- …