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Abstract

Clinical trials in cystic fibrosis (CF) patients established proof-of-principle for transfer of the wild-type cystic fibrosis transmembrane
conductance regulator (CFTR) gene to airway epithelial cells. However, the limited efficacy of gene transfer vectors as well as extra- and
intracellular barriers have prevented the development of a gene therapy-based treatment for CF. Here, we review the use of new viral and
nonviral gene therapy vectors, as well as human artificial chromosomes, to overcome barriers to successful CFTR expression. Pre-clinical
studies will surely benefit from novel animal models, such as CF pigs and ferrets. Prenatal gene therapy is a potential alternative to gene
transfer to fully developed lungs. However, unresolved issues, including the possibility of adverse effects on pre- and postnatal development,
the risk of initiating oncogenic or degenerative processes and germ line transmission require further investigation. Finally, we discuss the

therapeutic potential of stem cells for CF lung disease.

© 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Gene therapy is still far from becoming a viable cura-
tive treatment for cystic fibrosis (CF) patients. The currently
achieved level of understanding and technological progress
pose a number of interesting genetic, biological, pharmaceu-
tical and regulatory problems. Only once these issues have
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been solved will gene therapy become a valid option for the
treatment and cure of CF. This article is not intended to be
a comprehensive review of the field, but rather a description
of recent progress in the development of gene transfer vec-
tors, preclinical animal models, in utero gene therapy and
the application of stem cells as an experimental therapy for
CF. We also include a discussion of long-term therapeutic
strategies, which are currently in the pre-clinical stage of
development, such as genomic context vectors and human
artificial chromosomes based solely on the replication and
segregation mechanisms of the host cell.

The cystic fibrosis transmembrane conductance regulator
(CFTR) is expressed in airway epithelia, on the lumi-
nal side of the plasma membrane, where it serves as a

1569-1993/$ - see front matter © 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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phosphorylation-regulated C1~ channel and a regulator of
channels and transporters [1-3]. In particular, activation of
CFTR leads to parallel inhibition of the epithelial Na* channel
(ENaC), which is lost when CFTR is absent or dysfunctional
[2,3]. Current data support the “low volume” hypothesis of
CF lung disease, which postulates that loss of C1~ secretion
and increased Na' absorption reduce the thickness of the
airway surface liquid (ASL) overlying airway epithelia with
the result that mucociliary clearance is impaired [4]. In ad-
dition, reduced CFTR-dependent bicarbonate secretion might
affect the hydration of secreted mucus, affecting its physical
properties [5]. CFTR is also expressed in submucosal glands
in the airways, which play an important role in host defence.
Loss of CFTR function in duct-lining serous cells prevents the
secretion of mucus and anti-microbial factors by submucosal
glands [6]. Together, these pathological features contribute to
the formation of thick, dehydrated mucus, which provides an
ideal environment for persistent bacterial growth, triggering
chronic inflammation and ultimately, organ failure in the CF
lung.

Although CFTR is widely expressed in epithelia lining
ducts and tubes throughout the body, CFTR dysfunction in
the lungs is the main cause of morbidity and mortality in
CF patients. When the CFTR gene was cloned in 1989, CF
appeared to represent an ideal disease to be cured by gene
therapy, because it is a monogenic disease and the lungs
are easily accessible. However, none of the clinical trials
completed to date using either nonviral (cationic liposomes)
or viral (adenoviruses and adeno-associated viruses) vectors
achieved therapeutic correction of the basic defect and per-
sistent wild-type CFTR expression in nasal and pulmonary
epithelia of CF patients (for review, see [7—11] and Supple-
mentary Tables 1 and 2, available online only). Nonetheless,
these clinical trials provided proof-of-principle that CFTR
cDNA-based expression cassettes can be transferred to air-
way epithelia, as evidenced by molecular (DNA or mRNA
detection) or electrophysiological (nasal potential difference)
techniques.

Gene therapy vectors have to overcome anatomical and
cellular barriers prior to delivery of DNA to the relevant site,
i.e. the nucleus of target cells. Most vector molecules deliv-
ered to the airway surfaces are rapidly lost by mucociliary
clearance [12,13]. In CF airways, thickened mucus and mucus
plugs further enhance the barrier to gene transfer. Addi-
tional barriers preventing efficient gene delivery to CF airway
epithelia include the apical membrane glycocalyx, the lack
of appropriate receptors at this location, and tight junctions
between the cells. Submucosal glands that play an important
role in CF lung disease are not accessible from the luminal
side. Furthermore, we have to consider the histological and
anatomical complexity of the lung. The proximal and distal
airways are composed of a series of branching tubes lined
by different epithelial cells that show distinct proximal to
distal gradients in patterns of gene expression and function.
Obviously, it is not trivial to emulate the normal pattern of
CFTR expression with a relatively simple vector system.

2. Viral and nonviral vectors

Many viral and nonviral vectors have been tested for their
usefulness in CF gene therapy. In this review, we will discuss
vectors, which are currently used in the clinic or are in
development for this purpose. This section will also present
advances in the construction of DNA molecules designed to
achieve physiological levels of CFTR expression.

2.1. Viral vectors

Adenoviral (AV) vectors are severely hampered by their
low transduction efficiency of human airway epithelia and
by their induction of strong immune responses [14]. In con-
trast adeno-associated viral (AAV) vectors are capable of
long-term gene transfer and expression in bronchial epithelia
of rabbits and nonhuman primates. Because AAV vectors
are also devoid of strong inflammatory potential [15], they
have been investigated as alternative viral vectors for CF
gene therapy. Serotype 2 AAV vectors were tested in clinical
trials with repeated administration to CF patients [16—18].
The main conclusions from these studies were that AAV2
vectors demonstrated some efficiency, but were limited by
transient transgene expression due, at least in part, to the
immune response to the vector. To avoid immune recognition
and increase tranduction efficiency, AAV vectors with other
serotypes have been constructed. The availability of AAV
vectors in which a common AAV2-based genome is packaged
in capsids from different AAV isolates demonstrates that
AAV6 and AAVY serotype capsids transduce airway epithelia
at higher rates than the AAV2 capsid both in vitro and in vivo
[19,20]. More recently, Limberis et al. [21] showed that AAV6
was most effective at transducing the mouse nasal epithelium
in vivo and human ciliated airway epithelium in vitro, sug-
gesting its potential for further preclinical and clinical testing.
Because the cloning capacity of AAV vectors is too small
for full-length CFTR expression cassettes, truncated CFTR
variants have been developed [22]. In view of the complex
interactions between CFTR and other cellular systems, it is
uncertain whether this approach will complement all CFTR
functions. A novel approach, which involves segmental trans-
splicing between two AAV vectors expressing partial CFTR
sequences [23], will require very high transduction rates to be
effective in vivo.

In addition to the DNA viruses, AV and AAYV, various RNA
viruses have been validated for airway gene transfer. Murine
parainfluenza virus type 1 [or Sendai virus (SeV)], human
respiratory syncytial virus (RSV) and human parainfluenza
virus type 3 (PIV3) all transduce efficiently airway epithelia
cells by attaching to sialic acid and cholesterol [24,25], which
are abundantly expressed on the apical surface of these cells.
These viruses replicate in the cytoplasm and do not harbour
a risk of insertional mutagenesis. Although RSV and PIV3
are human pathogens, SeV, the only RNA virus for which
efficiency has been assessed in vivo, is not. Recombinant
RSV and PIV3 vectors have been used to correct defective
CFTR-mediated ion transport in primary cultures of human
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Table 1
Comparison of viral vectors for CF gene therapy

Vector Integration Persistence Pro-inflammatory/  Biosafety and Efficacy studies in  Efficacy studies on  Clinical
of expression Immunogenicity efficiency studies cellular models animal models trials
in vivo on animal (with CFTR (with CFTR for CF

models transgene) transgene)

Adenovirus No No High Yes Yes Yes Yes

Adeno-associated virus Both episomal and  Yes Low Yes Yes Yes Yes

integrated gene
expression

Sendai virus No, cytoplasmatic ~ No High Yes Yes Yes No

Parainfluenza virus No, cytoplasmatic =~ Unknown Human pathogen ~ No Yes No No

Respiratory syncytial virus  No, cytoplasmatic ~ Unknown Human pathogen ~ No Yes No No

Lentivirus Yes Yes Low Yes No Yes No

SV40 Yes Yes No Yes Yes Yes No

CF airway epithelia [26,27]. Of note, PIV3 restored ASL
volume regulation and mucus transport to levels approaching
those of non-CF ciliated airway epithelia [27] (Fig. 1). SeV-
CFTR administration to the nasal epithelium of CF mice
partially corrected defective CI™ transport, albeit with a
high degree of inflammation [28]. However, gene expression
mediated by recombinant SeV-based vectors is transient and
repeated administration does not seem feasible because of the
development of neutralizing antibodies against vector [29,30].

Lentiviral (LV) vectors derived from human immunode-
ficiency virus type 1 (HIV-1) and feline immunodeficiency
virus (FIV) are integrating retroviruses which can be ad-
equately pseudotyped to achieve efficient transduction of
airway epithelia [31,32] (Fig. 1). Treatment of nasal epithelia
of CFTR knockout mice with LV vectors expressing CFTR
generated sustained CFTR gene expression and corrected the
electrophysiological defect for up to 12 months [33,34]. It is
currently unclear, whether prolonged expression is the result
of vector integration into pulmonary stem or progenitor cells
or due to the long half-life of airway epithelial cells (up to 17
months according to recent studies [35]). Most importantly,
LV vectors can be repeatedly administered to the airways of
mice [36]. While this is very encouraging, it is vital that
innate immune responses to LV vectors are thoroughly inves-
tigated. In one study a LV vector elicited a mild and transient
induction of IFN-y transcription in tracheal epithelial cells,
whereas an AV-derived vector strongly activated NF-kB and
different cytokine transcripts (e.g. [CAM-1, IL-8, RANTES,
IP-10, TNF-a, IL-6, IL-18 [37]. These results argue that the
“stealth” properties of LV vectors warrant further evaluation
in preclinical animal models.

An important drawback of standard LV vectors pseu-
dotyped with the vesicular stomatitis virus glycoprotein G
(VSV-G) is their low efficacy of gene transfer to murine
lung epithelia in vivo. Approaches suggested to increase the
efficacy of gene transfer [14] include treatment of airway
epithelia with lysolecithin [33], addition of viscous adjuvants
[38] and tissue injury [39]. All of these strategies likely cause
transient damage to airway epithelia, modification of the
paracellular permeability, and expose previously inaccessible
receptors.

An alternative approach to enhance gene transfer is to
pseudotype LV vectors with heterologous envelope proteins
that target the apical membrane of intact airways with high
efficiency. Indeed, the envelope protein of the notorious
Ebola virus provides an effective alternative to VSV-G [40,
41]. Other glycoproteins, including the baculovirus envelope
protein GP64, have also been tested successfully in the
airways [42—-44]. The feasibility of LV-mediated gene transfer
to fetal airway epithelium has also been examined because
of the advantages of therapeutic intervention before disease
development, the absence of a functional immune response
and potentially the lower dose required [45—47] (see Section
4. “In utero gene therapy for cystic fibrosis?”).

In a recent study, Mueller et al. [48] demonstrated that
a novel minimal ("gutless’) SV40 CFTR expression vector
significantly reduced pathology in CFTR knockout mice
challenged with Pseudomonas aeruginosa. The authors argue
that SV40 is an attractive vector candidate because it offers
stable expression through integration and is not immunogenic
in rodents. Tests in larger animals and eventually humans
are required to establish efficacy and safety of this vector
system. For further information about the characteristics of
viral vectors used in CF gene therapy, see Table 1 and
Supplementary Table 2 (available online only).

2.2. Nonviral vectors

Among the many nonviral gene therapy vectors tested
(see Supplementary Table 1), GL67 ([Cholest-5-en-3-0l(3b)-
3-[(3-aminopropyl)[4-[(3-aminopropyl)amino]butyl]  carba-
mate]) emerged as a promising lipid for efficient lung trans-
fection based on structure-function studies [49]. However, two
clinical trials produced contradictory results concerning its
efficacy [50,51], most likely as a result of the different study
protocols employed. Zabner et al [50] showed that naked
DNA encoding CFTR was at least as effective as DNA-GL67
complexes at transfecting nasal epithelia. By contrast, Alton et
al. [51] demonstrated that nebulising DNA-GL67 complexes
into the lungs of CF patients led to a significant degree of
correction of the CI™ transport defect, whereas patients given
the placebo (GL67 alone) showed none. Moreover, all patients
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Fig. 1. CFTR gene transfer to the airway epithelium by viral and nonviral vectors and restoration of airway surface fluid (ASL) homeostasis. Schematic
representation depicting the role of CFTR and ENaC in ASL homeostasis in non-CF airway epithelium; the presence of CFTR modulates ENaC activity and
combined regulation of these ion channels dictates ASL depth regulation at a level sufficient for effective mucus transport (thick black arrow). In CF airway
epithelium, the absence of CFTR reduces fluid secretion and leads to ENaC dysregulation resulting in hyperabsorption of surface fluid, dehydration of ASL,
and mucostasis with accumulation of mucus plugs. Delivery of CFTR to CF ciliated cells by PIV, LV, or nonviral vectors should restore CFTR function, ENaC
regulation, ASL homeostasis, and mucus transport. PIV is representative of viruses replicating in the cytosol, whereas lentiviruses are integrating vectors.
Nonviral vectors transfect plasmid DNA which remains episomal in the nucleus. The nonviral delivery of mRNA could be an alternative to plasmid DNA,

avoiding the nuclear membrane barrier (not shown).

showed mild flu-like symptoms for a few hours immediately
after nebulization [51]. This unfavourable outcome was at-
tributed to unmethylated CpG dinucleotide motifs present in
bacterial DNA. Consistent with this idea, a CpG-free plasmid,
complexed with GL67, directed sustained in vivo expression
of CFTR mRNA for at least 56 days after aerosol delivery
to the mouse lung without eliciting an inflammatory response
[52]. This study also demonstrated that the duration of CFTR
gene expression, which usually lasts for 1-4 weeks, can be
extended by substituting a human housekeeping promoter for
the commonly used viral promoters. Using the ubiquitin C
promoter, the duration of CFTR expression was extended to
6 months or more after a single administration to the murine
lung [52,53].

GL67 is the delivery system of choice for the forthcoming
nationwide CF gene therapy clinical trials in the UK in a
larger cohort of patients [54]. The key question is whether
the level of gene transfer mediated by GL67 is sufficient to
improve clinical parameters. To address this issue, clinical
trials will need to be performed for long enough to have a
realistic chance of altering the underlying pathophysiology
(thus requiring repeated administration) using improved pre-
clinical tests and clinically relevant endpoints to measure
efficacy [55,56] (Fig. 1).

The use of messenger RNA (mRNA)-based nonviral gene
transfer is a new strategy to express CFTR in target cells [57].
By choosing mRNA instead of plasmid DNA as the transgene,
transfection efficiency depends solely on the cytoplasmic

expression machinery. A key advantage of this approach
is that the nuclear envelope, one of the major obstacles
to nonviral gene therapy, does not have to be overcome.
Messenger RNA transfection protocols are similar to those for
plasmid DNA and simpler than those for viral transduction.
In the past, mRNA-based gene therapy strategies were limited
by the cost of producing large amounts of translatable mRNA.
However, now mRNA generated by in vitro transcription from
plasmid templates can be obtained from commercial sources
at affordable prices. There have also been concerns about
the stability of mRNA and handling difficulties. However,
several papers have recently demonstrated that mRNA can be
successfully used to express transgenes in mammalian cells
and tissues [58-61]. Of note, mRNA transfection results in
controllable, transient transgene expression. Moreover, this
method does not modify the genome, avoiding the risk of
insertional mutagenesis.

When compared to DNA, much less is known about im-
mune responses to RNA, although responses to both seem to
be mediated by Toll-like receptors (TLR). Interestingly, innate
immune recognition of RNA by TLR3, TLR7 and TLR8
appears to be controlled by nucleotide modifications, includ-
ing methylation (see http://medlib.med.utah.edu/RNAmods).
Because, in vitro transcribed RNA elicits robust immune
responses by cultured dendritic cells [62], it will be critical to
understand better these “protective” in vivo nucleotide modifi-
cations. Finally, mRNA-mediated gene expression diminishes
rapidly (i.e. <3 days) in vitro and in vivo [61]. Future research
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should address this drawback, which limits significantly the
therapeutic potential of mRNA-mediated transfection.

2.3. Genomic context vectors for delivery of therapeutic
CFTR locus

Effective therapy by in vivo delivered therapeutic DNA
requires physiological levels of gene expression maintained
for prolonged time periods. To achieve this goal, the use of
genomic fragments that contain all the long-range control
elements allowing tissue-specific gene expression at physio-
logical levels has been proposed [63]. Such a goal requires
knowledge of the critical regulatory elements in the CFTR
locus. In the following section, we present an up-to-date
review of those elements and discuss the progress made in the
field of genomic context vectors (GCVs).

2.3.1. The CFTR locus: genomic and functional analysis

The CFTR gene maps at 7q31.2 and has a primary tran-
script of 189 kb. Its expression is regulated temporally during
development and spatially in different tissues. The CFTR
locus is flanked by genes with different tissue-specific ex-
pression profiles, suggesting the presence of specific control
elements and insulators (Fig. 2). Nuclear localization studies
of CFTR and its adjacent gene loci in humans and mice
demonstrate that different chromatin regions behave indepen-
dently, depending on their expression profiles [64,65]. This
implies the presence of a finite chromatin block between
adjacent genes in the CFTR locus [64,65]. Importantly, these
studies also revealed that the patterns of nuclear localization
are not conserved between human and mouse [64,65].

In 1991, Anand et al. [66] isolated the entire human CFTR
locus in a 320 kb yeast artificial chromosome (YAC) vector
(YAC 37AB12). Subsequently, YAC 37AB12 was used to
complement the loss of CFTR function in CFTR knockout
mice [67]. Accordingly, YAC 37AB12 achieved physiological
levels of human CFTR expression in many of the murine cells
in which CFTR is normally expressed, demonstrating that the
human protein effectively restores CFTR function in CFTR
knockout mice [67]. However, the molecular mechanisms by
which YAC 37AB12 regulated tissue and temporal specific
CFTR expression were not elucidated. Analysis of distinct
promoter regions from CFTR homologues in different species
failed to reveal a conserved structure of promoter elements
and did not detect the presence of tissue-specific promoters
as evidenced by the absence of TATA elements [68-70].
These studies suggest that CFTR expression is regulated by
other mechanisms. Harris and colleagues mapped DNasel
hypersensitive sites (DHS) along the entire CFTR locus with
high-resolution methods and identified a number of cell-type
specific DHSs within and flanking the gene (for review, see
[71]) (Fig. 2). Two DHSs were mapped at —20.5 and —79.5
kb from the transcription start site. A cluster of five DHSs was
identified in the region 3’ to the CFTR gene at +5.5, +6.8, +7,
+7.4 and +15.6 kb and eleven DHS clusters were identified
within introns 1, 2, 3, 10, 16, 17a, 18, 20 and 21 [71].
Although these DHSs did not fully correlate with cell-type

specific CFTR expression, the intron 1 DHS corresponds to a
regulatory element that specifically controls CFTR promoter
activity in intestinal cells [72,73]. Accordingly, removal of
this element from the CFTR-YAC caused a reduction of
CFTR expression by 60% in transgenic mice, but only in
the small intestine [74]. More recently, Blackledge et al. [75]
demonstrated that the +6.8 DHS functions as an insulator and
mediates, in cells that express CFTR, interaction with the
CFTR promoter. This suggests that the CFTR locus exists as a
loop, which is characteristic of an active chromatin hub [75]
(Fig. 2). Finally, it was suggested that suppression of CFTR
transcription does not involve promoter methylation [76].

2.3.2. Human artificial chromosomes for CFTR expression at
physiological level and long-term maintenance

The principal aim of gene therapy in CF is to develop
a DNA molecule conferring cell-type specific and physio-
logical CFTR expression and possibly high mitotic stability.
The complete genomic CFTR locus, including regulatory el-
ements, is expected to provide the natural genomic context,
similar to that found on endogenous chromosomes, thus al-
lowing expression of the correct protein at the right time in
the various stages of regenerating and differentiating cells.
In principle, cell-type specific vectors would not require
tissue-specific delivery since cells normally not expressing
CFTR would also not express the therapeutic gene. Applied
through stem cells, the naturally-regulated gene could also
correct different cell types participating in organ regeneration.
A feasible approach would be the assembly of the therapeutic
artificial chromosome in vitro and transfer into stem or iPS
(induced pluripotent stem) cells that can subsequently be used
to colonize the target tissues/organs upon implantation [77].
This approach might also include the use of tracking markers
that allow visualization and isolation of progenitor cells using
the microRNA machinery [78].

Effective endogenous replicators combined with a cen-
tromeric function in the vector are expected to substantially
improve stability of expression after delivery. Clearly, the
development of such regulated and spontaneously replicat-
ing vectors is a challenging feat of genetic engineering. It
requires a thorough understanding of chromosomal elements
that govern transcription regulation and replication. A decade
of research on human artificial chromosomes (HACSs) has
shown that several members of alpha satellite DNA se-
quences, the principle class of tandemly repeated DNA of
human centromeres, efficiently formed centromeres de novo
[79-81]. Naked DNA arrays >80 kb transferred into the
human lung sarcoma cell line HT1080 efficiently formed
distinct chromatin regions of a functional centromere and
bound the centromere-specific histon H3 variant CenpA (cen-
tromere protein A) indicative of active centromeres. Shorter
regions were less efficient and the newly formed centromeric
chromatin extended into adjacent, non-centromeric input se-
quences, potentially interfering with gene expression. Isogenic
alpha satellite sequences below ~30 kb completely lost their
seeding activity [82-84], suggesting that functional regions
cannot efficiently assemble from short input molecules in
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Fig. 2. Cis-acting elements possibly involved in tissue-specific expression of the CFTR gene. (A) the CFTR locus maps at position 7q31.2 and is flanked
upstream by ASZI and downstream by CTTNBP2; these three genes have different expression profiles, as indicated. (B) schematic representation of the
CFTR locus; the exons are indicated by vertical bars; DNasel hypersensitive sites (DHSs) are indicated by arrows; black arrows identify sites involved in
tissue-specific expression (intron 1 DHS positively regulates promoter activity in intestinal cells, —20.9 kb and +6.8 kb are bound by the transcriptional
repressor CTCF (CCCTC-binding factor) in primary epididymis cells). (C) DHSs mapped by a high-resolution method in cells that do not express (skin
fibroblasts) or express (Caco2 and 16HBE140—) CFTR. DHSs are indicated by vertical bars, height and thickness of the bars are proportional to the intensity
of the DHS signal. Of interest is the DHS in intron 10, which was found in the bronchial epithelial cell line 16HBE140—, but not in the other cell lines.
Further investigation is required to assign a role to this element. (D) in primary epididymis cells —20.9 kb and +6.8 kb DHSs, previously identified as
enhancer-blocking insulators, bind CTCF, which promotes formation of a chromatin loop (chromatin hub).

vivo. It has also been established that genomic genes can
be stably expressed in the vicinity of de novo centromeres
[65,85,86].

Since the assembly of the first HACs, which were obtained
using either uncloned tandem repeat arrays or arrays cloned in
a YAC [79,80] and since the first CFTR locus inserted into a
pre-existing human minichromosome [66,87], PACs (P1 arti-
ficial chromosomes)/BACs (bacterial artificial chromosomes)
have become feasible cloning tools capable of solving the
principal problems of scale up, storage, and DNA damage.
So far different prokaryotic artificial chromosome vectors are
available, including: (i) PAC/BAC clones covering the entire

CFTR locus and for which the CFTR exons sequences are
available [88]; (ii) one vector based on the Epstein-Barr virus
(EBV) replication mechanism [89] and (iii) BAC vectors
containing the entire CFTR locus plus additional up- and
down-stream sequences cloned by a single step procedure
[90]. Some of these vectors have been shown to drive produc-
tion of functional CFTR in model cells [89,90]. Furthermore,
novel methods have been devised, including PAC cloning and
long PCR of 20-60 kb with a very low error rate to tailor loci
and boundaries, and delivery mediated by invasive bacterial
cells. A PAC vector of 159 kb containing the CFTR locus
from approximately —60 kb 5’ to the middle of intron 9 to
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which a synthetic CFTR-EGFP fusion was added, showed ex-
pression and correct splicing in HT1080 when the vector was
delivered either by bacterial cells (bactofection) or by lipids
(lipofection) [91]. Ongoing research applies re-constructed
versions of the CFTR locus on HACs, either based on large
wild-type sequences, engineered loci with variants for an
optimized protein, or silent variants easing the RT-PCR based
discrimination between the transgene and endogenous CFTR
genes.

The final size and exact arrangement of the functional el-
ements on a therapeutic CFTR-HAC are still unclear. Further,
the analytical power has to be improved for routine de novo
HAC detection in small samples of primary cells and for fine
structural and functional analyses. Animal transgenics with de
novo HACs and the development of transfer methods early
in life using suitable animal models (see Section 3. “Animal
models old and new”) need to be developed to study delivery,
mitotic persistence, and test for meiotic incompetence.

In principle, HAC construction allows the exclusion of
virtually all non-human vector portions, and since HACs
are based on chromosomal elements of human origin they
should be well tolerated and should not elicit undesired
immune responses such as those induced by bacterial CpG-
rich sequences [92,93]. To date the most reliable technique
that allows therapeutic use of HACs is the combination of
patient-specific iPS or stem cells and HACs assembled in
vitro with the normal version of the defective gene. Proof
of principle has recently been established using Duchenne
muscular dystrophy (MDM) as a model disease and an
HAC containing the dystrophin locus (DYS-HAC). Indeed,
DYS-HAC-mediated correction of MDM was obtained in
the mdx mouse model and in patient-derived iPS cells [77].
Nonetheless, it is also reasonable to predict that in future the
availability of a detailed functional map of the CFTR locus
and a better definition of the DNAs required to assemble
chimeric vectors that retain elements important for tight
regulation and replication of the gene in different tissues will
allow direct assembly of therapeutic HACs in target cells.

3. Animal models old and new
3.1. Mouse models

Mice, including strains carrying Cftr mutations have been
widely used to test the efficacy of CFTR expression vectors.
The primary target of these vectors is the airway epithelium,
in view of its clinical prominence in CF pathology. The his-
tology, physiology and phenotypic characteristics of normal
and CF mutant lungs and airways are reviewed elsewhere
in this issue [94]. To evaluate the results of gene transfer
experiments and their relevance for CF gene therapy, it is
important to understand the complex cellular design of the
mouse airways and differences with the human lung. The
mouse nasal cavity is lined in part by a specialized olfactory
epithelium, mainly sustentacular cells, and with airway ep-
ithelium consisting mainly of ciliated and mucus producing
non-ciliated cells. Numerous submucosal glands produce fluid

and mucus. Because of its apparent similarities with human
bronchial airways, this tissue is considered most relevant
for CF gene therapy studies. The mouse tracheal epithelium
resembles the human nasal airway epithelium with respect
to cellular composition, but gene expression gradients are
observed. In the lung, the mouse airways are covered with cil-
iated and Clara cells, resembling distal bronchioles in human.
CFTR is expressed in surface epithelial cells and submucosal
glands as was shown by electrophysiological characteriza-
tion and in situ hybridization ([95]; for review, see [94]). It
should be noted that the distribution of submucosal glands
in murine airways is significantly different from the human
pattern; mouse glands are restricted to the proximal region
of the trachea and are absent from bronchi. Moreover, inbred
strain background and CFTR genotype influence the murine
distribution of submucosal glands [96,97]. The importance of
these differences in relation to the relevance of mouse models
of CF lung disease is unclear. Inmunohistochemistry studies
of mouse CFTR expression are limited by the properties of
the available antibodies, but confirm proximal to distal mRNA
gradients of CFTR expression and further suggest a distinct
cell-specific pattern.

Current gene transfer vectors delivered by intranasal or
intra-tracheal application hit cells at random and depending
on their nature, create a CFTR expression pattern that
does not necessarily match that of the endogenous gene.
In this context almost every available vector system has
been tested and reviewed (see Section 2. “Viral and nonviral
vectors” and Supplementary Tables 1 and 2, available online
only). Most of these studies concentrate on the efficiency
of delivery, while some studies show a partial correction of
the electrophysiological abnormalities in CF epithelia [98—
100]. Only few studies so far report a significant change
in a CF related phenotypic trait. Nonviral systems including
plasmid/liposome formulations are effective in transfecting
the nasal epithelium, but high transfection rates and functional
complementation of the CFTR defect in mutant mice are
difficult to achieve [101]. Cationic polymers like simple
polyethylenimine (PEI) are effective delivery systems in the
mouse lung, but their toxicity is a concern [102], although
when formulated with serum albumin their efficiency is not
diminished by CF sputum [103]. Advanced polyplexes have
been developed and tested in a mouse model to find a delivery
system with improved qualities [104]. Both AV [105,106]
and AAV vectors [21] efficiently transduce murine lung and
nasal epithelia. A significant effect on susceptibility to fungal
infection was reported in a CF mutant mouse model using an
AAV vector expressing a truncated CFTR [107]. The use of
LV vectors and SV40 derived vectors in mouse models was
discussed above (see, Section 2.1. “Viral vectors”).

While these studies give a good and relatively affordable
impression of the principal capabilities of vector systems in
vivo, several concerns have to be addressed. First, the size and
architecture of the human airways are substantially different
from those of the mouse. Therefore, vector delivery has to be
studied in large animals and eventually in clinical trials. Con-
cerning phenotypic complementation, no animal models other
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than CF mutant mice were available until very recently. The
absence of pathology in the mouse nasal airways and lungs
that can be quantified easily, together with the limited effi-
ciency and stability of current delivery systems does not allow
a reliable prediction of the therapeutic capabilities in human.

3.2. Large animal models

Set against its many advantages, the major drawback of
the mouse as a model for pulmonary gene therapy is its
small size. Mice have approximately 10° airway epithelial
cells, while humans have 10* times that number [108,109].
Larger animal models for assessing gene delivery with null
CFTR have therefore been developed in pig and ferret. Sheep,
whose lungs are comparable in size and physiology to human
lungs, have been extensively used in recent years for in vivo
testing of pulmonary gene delivery. Although the sheep has
normal ovine CFTR activity, the model nevertheless enables
the efficacy of human CFTR gene transfer to be assessed at
the RNA and protein level, and also enables any toxic effects
of human-equivalent doses to be measured [110,111].

Through gene-targeting, Rogers et al. [112] succeeded
in generating CFTR-knockout pigs which are all born with
severe meconium ileus requiring surgical intervention [113].
While nasal electrophysiology confirms the lack of functional
CFTR in CFTR knockout piglets, early indications are that
their lungs and airways are histopathologically normal at birth.
CFTR—/F508del piglets already exist and appear to have a
similar phenotype to CFTR knockout (—/—) littermates [114].
We eagerly await the development of CFTR F508del/F508del
animals. However, the data of Ostedgaard et al. [115] and
Liu et al. [116] suggest that porcine F508del-CFTR might
not be as severely misprocessed as its human equivalent,
suggesting that a milder CF phenotype might be expected in
the F508del/F508del pig model. It remains to be seen whether
homozygous CFTR mutated pigs will go on to develop
spontaneous infections and CF-like lung disease. However,
recently a limited number of long-lived (3 month) CFTR—/—
and CFTR—/F508del animals were diagnosed with airway
wall thickening, increased bacterial load, inflammation and
mucus plugging [117].

Great progress towards a ferret CFTR knockout model has
also been made [118]. Its human-like airway morphology and
cell types make the ferret a compelling model for studying
lung disease, though it suffers from the scale problem in terms
of its usefulness as a surrogate for humans in assessing dose-
equivalent nebulised gene delivery. On the other hand, this
also implies that experiments with this model are relatively
affordable. Furthermore, the ferret is routinely used in viral
lung infection studies [119], which implies that a large body
of data and expertise is available. Current reports show that
similar to the pig and mouse models, intestinal disease causing
severe perinatal mortality is the dominant trait of the CF ferret
[120]. Therefore, further attempts are aimed at obtaining a
“gut corrected” strain expressing normal CFTR in intestinal
epithelia only, which may develop lung disease in the absence
of intestinal complications [120].

If progressive lung disease can be confirmed and methods
are developed to extend the lifespan of the mutant animals,
both the pig and the ferret model would become useful models
to study vector delivery to CF airways.

4. In utero gene therapy for cystic fibrosis?

None of the gene therapy approaches for CF presently
under development has yet reached effective clinical appli-
cation. So far all clinical gene therapy studies for CF were
applied to adolescent or adult patients in whom disease
manifestation have already caused irreversible tissue damage.
Some presently planned clinical trials indicate a trend towards
application at earlier ages [121] and this trend would be
most consequently pursued by in utero (fetal, prenatal) gene
therapy.

The underlying hypotheses of in utero gene therapy are (i)
that it might allow targeting of tissues/organs, which are inac-
cessible later in life before early onset tissue damage occurs,
(ii) that it might achieve permanent therapeutic transgene ex-
pression in expanding stem cell populations using integrating
vectors and (iii) that it might induce tolerance to vector and
transgenic protein. The small size of the fetus also provides
an advantageous vector to cell ratio, which is relevant for
considerations of both efficiency and vector production costs.
Successful fetal gene therapy could therefore offer prenatal
prevention of disease, particularly in early manifestation con-
ditions, provide a third option in addition to acceptance of an
affected child or abortion, and broaden the scope and change
attitudes towards prenatal screening.

Experimental work on rodents, sheep and non-human pri-
mates over the last 15 years has indeed verified the above
hypotheses: In rodents, work demonstrated the feasibility
of effective in utero transgene delivery to and expression in
virtually all tissues and organs relevant for various genetic dis-
eases [122]. Evidence for development of postnatal tolerance
against the expressed transgenic protein has been provided
[123,124] and evidence for stem cell transduction and clonal
expansion of transduced cells also shown [125]. Collaborative
work with Fetal Medicine specialists has shown that obstetric
technologies, as used for the treatment of human fetuses, can
be applied for efficient gene delivery to large animal models
representative of the human fetus [45,126]. Finally, first proof
of principle for curative in utero gene therapy for a few human
genetic conditions have been provided in animal models of
these diseases including conditions of the eye, brain, liver,
muscle and the blood clotting system [127].

Given these results and the ongoing rapid progress in the
development of more efficient, tissue specific and safer vector
systems, an application to CF appears to be entirely feasible.
This would, however, need a dedicated effort, preferably on a
relevant large animal model; if possible one for CF. Effective
marker gene expression in the fetal airways was shown
using AV, pseudotyped LV and AAV vectors [21,41,128,129].
The AV vector was also used on the sheep fetal model to
demonstrate efficient vector application by minimally invasive
transcutaneous ultrasound guided intervention [129]. Further
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work is now needed to develop novel vector systems for
efficient gene transfer to airway epithelia, mediating longer-
term expression of marker genes and easily detectable CFTR.
Such studies would not only be relevant to CF, but also
to other genetic diseases of the respiratory tract, such as
surfactant B deficiency and alpha-1 antitrypsin deficiency.
New generations of safe LV or AAV vectors appear presently
as the most hopeful vectors for this task. In particular, safety
issues surrounding vector-associated oncogenesis, which has
been shown for onco-retroviral and LV vectors [130,131],
and for which there is also some evidence with AAV vectors
[132], are highly important. Oncogenicity is a general risk
factor for gene therapy when vector systems with the potential
for integration into the host genome are applied. In fetal life
this may be particularly relevant since many genes, which we
commonly know as oncogenes are physiologically active in
cell proliferation and differentiation during early development
and may therefore be more prone to vector insertion and
hence, dysfunction at this time rather than later in life.

Other more hypothetical risks of in utero gene therapy,
such as germ-line transfer, and toxicity of the transgenic
protein also deserve consideration. Germ-line transfer would
most likely depend on vector type and application route. Since
the germ cells are well compartmentalized at the gestation
time proposed for in utero gene therapy, the vascular or
intra-peritoneal routes would be the most likely ones to carry
such risk. This is no different from the presumed risk in
postnatal gene therapy. Low-level retroviral transduction of
germ cell progenitors was detected in male or female gonads
after intra-peritoneal vector application to fetal sheep and
monkeys, respectively [133,134]. However, no evidence of
germ line transmission could be found in rodents or sheep
after fetal vector administration in experiments designed to
address this question [135]. For both pre- and postnatal gene
therapy, this problem requires monitoring in the context of
any clinical trial. Important consideration should be given
to the risk of untimely, ectopic or over-expression of a
transgenic protein in utero causing adverse effects on fetal and
postnatal development [136]. This will be almost impossible
to predict, would be specific for individual proteins and
would most likely also depend on the gestation age at vector
application [137]. Stringent control of expression to make
sure that the protein is expressed only in the target cells
and at physiological levels should minimize such risk. With
regard to CF, it is of interest to note that the expression of
CFTR in the lungs is at its highest levels in mid-gestation
[138]. Animal experiments may not be entirely reliable in
predicting outcome in a human fetus and, therefore, careful
prenatal monitoring will be required and life-long postnatal
observation of any in utero treated individual should be
conducted as in any other gene therapy trial.

The novelty of fetal gene therapy demands particular eth-
ical consideration of risks, benefits and alternatives. In utero
gene therapy requires an exact prenatal diagnosis. At this
stage, it is too late for in vitro fertilization-preimplantation
selection, which requires preconception genetic analysis. The
options after prenatal diagnosis of a genetically affected fetus

are acceptance or termination on medical grounds. In CF,
acceptance of an affected child and hope for a postnatal
curative therapy or at least for further improvements of symp-
tomatic therapies are well founded as would be a decision for
termination to avoid the unknowns of the individual disease
manifestation, prognosis and therapy. Although the benefits of
successful in utero gene therapy would be very high compared
to the former options, the risk of failure is very difficult to
assess in an introductory phase. It is therefore not likely that
CF would rank high for initial in utero gene therapy trials.
The situation might be very different in severe genetic
diseases for which no therapy is available and particularly for
families objecting in principle to abortion. Such conditions
would most likely be the first targets of an in utero approach.
On the basis of solid preclinical evidence for a good chance
of a curative outcome and with full information of the
possible risks, such families might wish to participate in a
clinical trial of in utero gene therapy. If proven successful
with such conditions and depending on the progress of
alternative therapies, other diseases, including CF, could also
be considered. However, quite obviously more work on
vectors and animal models is still needed to reach a level of
scientific confidence for potential success that would justify a
human clinical application of in utero gene therapy for CF.

5. Promises and pitfalls of stem cell-based therapy

The concept is emerging that CFTR dysfunction may
directly affect regulatory activities of cells involved in
immune-surveillance and host response. It has been re-
ported that polymorphonuclear leukocytes (PMN) express
functional CFTR protein, which regulates phagolysosomal
function [139]. Moreover, several lines of evidence suggest a
genetic component to altered PMN function in CF [140]. In
alveolar macrophages, CFTR appears to control phagosome
acidification and bacterial killing, [94,141]. Accumulating ev-
idence indicates that platelets, in addition to their well-known
haemostatic functions, may play a role in inflammation and
its resolution [142]. CF platelets display an array of defects,
including the generation of lipoxins, well-known mediators of
inflammation resolution [143].

Given the high PMN burden and inflammatory response in
the CF lung, anti-inflammatory therapy has been suggested
for treatment of CF lung disease. Both corticosteroids and
non-steroidal anti-inflammatory drugs have been used in
this context with mixed results [144,145]. The finding of
abnormalities in CF in circulating and resident immune cells
suggests the possibility of hematopoietic stem and progenitor
cells (HSPCs) as a new target for CF gene therapy.

Stem cells are cells that have the capacity for unlimited
self-renewal, meaning that they divide asymmetrically, both
renewing themselves and producing a more differentiated
daughter cell. This property has elicited excitement as to the
use of these cells for therapeutic application. Indeed, HSPCs
have been widely used in the clinic in recent decades for
allogeneic transplantation of patients with hematologic malig-
nancies [146,147] or genetic disorders [148—152]. Moreover,
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recent studies demonstrate that treatment of genetic disorders
by transplantation of autologous bone-marrow transduced
with HIV derived LV vectors is feasible and effective in
animals models [153]. Clinical trials to establish the safety
and efficacy of this approach are underway.

Initially, the therapeutic application of stem cells in CF
lung disease was expected to be as a tool to reconstitute
airway epithelia damaged by bacterial infection and ongoing
inflammation. The rationale is based on homing of trans-
planted stem cells to the damaged stem cell niche and their
differentiation into epithelial cells. In the most promising clin-
ical scenario, these cells should be obtained from the patient,
engineered ex-vivo with wild-type CFTR gene-sequences (in
a form suitable for providing life-long expression, such as an
HAC or a LV vector), and reintroduced into the lung by local
administration. This manoeuvre should itself not be inflam-
matory, and it is expected that an immune response should not
be mounted. Thus, many issues have to be addressed before
stem cell-based therapy could be a valid option for treatment
of CF lung disease.

Systemic administration of bone marrow-derived stem
cells in mice after total body irradiation and/or after treatment
with epithelia-injuring reagents resulted in engraftment of
stem cells mainly in alveolar spaces and sometimes in
conducting airways (for review, see [154,155]). Considering
that the therapeutic target in CF is the epithelium lining
the conducting airways, proof-of-principle that intratracheal
injection of stem cells into the lung gives rise to airway
epithelial cells has been provided [156—159]. Nevertheless,
the engraftment of bone marrow-derived stem/progenitor cells
into the airways is a very inefficient process. Only a very
small proportion (i.e. <0.01-0.025%) of lung epithelial cells,
is derived from transplanted bone marrow-derived cells [154].
Although this could be due to technical problems, it might
also be the case that whole bone marrow cells or selected
populations have an inherent inability to engraft into the
lung and differentiate into epithelial cells. The animal model
employed and the type of damage to the epithelium might be
another variable.

The source of stem cells may have important implications.
Repopulation of injured airway epithelium in vivo has been
attempted mostly with bone marrow-derived stem cells (for
review, see [154,155]), but embryonic stem cells [158], cord
blood-derived mesenchymal stem cells [160] and amniotic
fluid stem cells [161] have also been used. However, the out-
come in terms of transformation of stem cells into epithelial
cells is similar to that obtained with bone marrow-derived
cells. For example, a recent report on embryonic stem cells
and cord blood-derived mesenchymal stem cells showed that
0.4 to 5.5% of stem cells engrafted in polidocanol-injured
airways [158]. Moreover, the mouse might not be the most
appropriate model to investigate this issue, due to anatomical
and physiological differences compared to human lungs [94].
As discussed above (see Section 3. “Animal models old and
new”), studies using large animal models are warranted.

Transduction of stem cells with retroviruses or lentiviruses
in association with transplantation of engineered stem cells

has been attempted in a few cases [158,160,162]. For example,
Sueblinvong et al. [160] transduced human cord blood-
derived mesenchymal stem cells with recombinant LV vectors
expressing human CFTR. After systemic administration of
the engineered cells to immunotolerant NOD-SCID mice,
rare cells that had acquired cytokeratin and human CFTR
expression were found in the airway epithelium [160]. Clearly,
more studies are needed using appropriate animal models and
stem cells with higher plasticity. However, concerns exist
about the oncongenic potential of integrating LV vectors (see
above, Section 2. “Viral and nonviral vectors”). These viruses
belong to the same family as the oncoretroviruses, which are
responsible for tumor initiation and propagation in patients
treated with genetically manipulated allogeneic bone marrow
cells (for review, see [163]).

Two groups have addressed whether transplanted stem
cells restore CFTR function. Loi et al. [164] transplanted
cultured bone marrow stromal cells expressing wild-type
CFTR into transgenic CFTR knock-out mice. The authors
observed the engraftment of donor-derived airway epithelial
cells, but only in small numbers (approximately 0.025%).
The total number of chimeric lung epithelial cells exhibiting
CFTR expression was even less (0.01%). Bruscia et al.
[165,166] transplanted CFTR-expressing bone marrow cells
(obtained from green fluorescent protein transgenic mice)
into irradiated CFTR knockout mice. Like Loi et al. [164],
the authors observed very low levels of engraftment (0.01-
0.1%) in the intestine, correlating with very low levels
of CFTR mRNA expression. Surprisingly, the bioelectric
profile of the CFTR knockout mice transplanted with CFTR-
expressing bone marrow cells was significantly improved in
both intestinal and nasal epithelia. Although the mechanism
responsible for this effect is not known, these results imply
that successful transplanation of very few cells is sufficient
to restore CFTR function. In vitro studies suggest that
expression of wild-type CFTR in only 6 to 20% of airway
epithelia cells is sufficient to restore CFTR-mediated Cl1~
secretion to airway epithelia [167,168]. However, in vitro and
in vivo studies suggest that nearly every cell must express
CFTR to reverse the defect in ENaC-mediated Na™ absorption
[167,169,170]. Clearly, the yield of transplanted stem cells,
which become airway epithelial cells must be increased
substantially to achieve a potentially therapeutic effect.

Concerning efficacy, engraftment of stem cells into the
lung should have a curative effect on bacterial infection
and lung inflammatory. So far only a preliminary report
has been presented on this issue by van Heeckeren and
colleagues (cited in [171]). When these authors transplanted
wild-type bone marrow into a CFTR knockout mouse model
of P. aeruginosa infection, they observed a 50% reduction of
mortality. Interestingly, epithelial chimerism was not found
since more than 97% of donor cells had a CD45* phenotype
and were therefore not epithelial cells. This suggests that
myeloid cells from bone marrow-derived stem cells control
pulmonary inflammatory responses in this model of lung
inflammation. Consistent with this idea, Bruscia et al. [172]
recently demonstrated that macrophages derived from trans-
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planted bone marrow participate in the hyperinflammatory
response to P. aeruginosa endotoxin in CF mice. To what
extent this applies to human CF lung disease remains to be
established.

The issue of the pro-inflammatory or immunogenic poten-
tial of stem cell transplantation in the context of CF lung
disease requires further study. Based on published literature,
bone marrow mesenchymal stem cells should be a particular
focus of study because they possess the potential to become
airway epithelial cells, at least in vitro [173], and they promote
tissue repair by secreting soluble factors that block apoptosis
[174-176], inflammation [157,177-179], and other immune
cell-mediated responses [180].

6. Concluding remarks

A plethora of delivery vectors have been evaluated for
efficient and safe CFTR gene transfer to airway epithelia.
However, there remains an absolute need to develop a vector
suitable for repeated delivery that is capable of penetrating
CF mucus. In parallel, the assessment of sensitive and specific
surrogate biomarkers should be pursued.

The relevant cell compartment to target in CF airways still
remains elusive. Bearing this caveat in mind, all epithelial cell
types need be considered as potential candidates. Stem cells
offer a unique opportunity to achieve this goal, but considering
their limited tendency to differentiate into epithelial cells,
their use for clinical application is still far from realistic. An
alternative is now offered by the emergence of iPS cells as
a new tool to obtain stem cells with pluripotent capacities
from the same patient. iPS cells might be considered the
ideal recipient for CFTR-expressing HACs engineered to
carry all the necessary regulatory sequences for physiological
expression of the CFTR gene.

Animal models will continue to be important tools for the
development and assessment of gene and cell therapies. Novel
methods for creating mutations in species other than mice
offer the imminent prospect of accurate models of CF lung
disease. Time will tell if the pig model already fulfils this
goal. Finally, the success or failure of any curative postnatal
therapy for CF, including gene therapy, will also determine
the future relevance of in utero gene therapy for this still
incurable and severely life-shortening disease.
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