97 research outputs found

    Age and date for early arrival of the Acheulian in Europe (Barranc de la Boella, la Canonja, Spain)

    Get PDF
    The first arrivals of hominin populations into Eurasia during the Early Pleistocene are currently considered to have occurred as short and poorly dated biological dispersions. Questions as to the tempo and mode of these early prehistoric settlements have given rise to debates concerning the taxonomic significance of the lithic assemblages, as trace fossils, and the geographical distribution of the technological traditions found in the Lower Palaeolithic record. Here, we report on the Barranc de la Boella site which has yielded a lithic assemblage dating to ,1 million years ago that includes large cutting tools (LCT). We argue that distinct technological traditions coexisted in the Iberian archaeological repertoires of the late Early Pleistocene age in a similar way to the earliest sub-Saharan African artefact assemblages. These differences between stone tool assemblages may be attributed to the different chronologies of hominin dispersal events. The archaeological record of Barranc de la Boella completes the geographical distribution of LCT assemblages across southern Eurasia during the EMPT (Early-Middle Pleistocene Transition, circa 942 to 641 kyr). Up to now, chronology of the earliest European LCT assemblages is based on the abundant Palaeolithic record found in terrace river sequences which have been dated to the end of the EMPT and later. However, the findings at Barranc de la Boella suggest that early LCT lithic assemblages appeared in the SW of Europe during earlier hominin dispersal episodes before the definitive colonization of temperate Eurasia took place.The research at Barranc de la Boella has been carried out with the financial support of the Spanish Ministerio de Economı´a y Competitividad (CGL2012- 36682; CGL2012-38358, CGL2012-38434-C03-03 and CGL2010-15326; MICINN project HAR2009-7223/HIST), Generalitat de Catalunya, AGAUR agence (projects 2014SGR-901; 2014SGR-899; 2009SGR-324, 2009PBR-0033 and 2009SGR-188) and Junta de Castilla y Leo´n BU1004A09. Financial support for Barranc de la Boella field work and archaeological excavations is provided by the Ajuntament de la Canonja and Departament de Cultura (Servei d’Arqueologia i Paleontologia) de la Generalitat de Catalunya. A. Carrancho’s research was funded by the International Excellence Programme, Reinforcement subprogramme of the Spanish Ministry of Education. I. Lozano-Ferna´ndez acknowledges the pre-doctoral grant from the Fundacio´n Atapuerca. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Improving implementation of evidence-based practice in mental health service delivery: protocol for a cluster randomised quasi-experimental investigation of staff-focused values interventions

    Get PDF
    BACKGROUND: There is growing acceptance that optimal service provision for individuals with severe and recurrent mental illness requires a complementary focus on medical recovery (i.e., symptom management and general functioning) and personal recovery (i.e., having a ‘life worth living’). Despite significant research attention and policy-level support, the translation of this vision of healthcare into changed workplace practice continues to elude. Over the past decade, evidence-based training interventions that seek to enhance the knowledge, attitudes, and skills of staff working in the mental health field have been implemented as a primary redress strategy. However, a large body of multi-disciplinary research indicates disappointing rates of training transfer. There is an absence of empirical research that investigates the importance of worker-motivation in the uptake of desired workplace change initiatives. ‘Autonomy’ is acknowledged as important to human effectiveness and as a correlate of workplace variables like productivity, and wellbeing. To our knowledge, there have been no studies that investigate purposeful and structured use of values-based interventions to facilitate increased autonomy as a means of promoting enhanced implementation of workplace change. METHODS: This study involves 200 mental health workers across 22 worksites within five community-managed organisations in three Australian states. It involves cluster-randomisation of participants within organisation, by work site, to the experimental (values) condition, or the control (implementation). Both conditions receive two days of training focusing on an evidence-based framework of mental health service delivery. The experimental group receives a third day of values-focused intervention and 12 months of values-focused coaching. Well-validated self-report measures are used to explore variables related to values concordance, autonomy, and self-reported implementation success. Audits of work files and staff work samples are reviewed for each condition to determine the impact of implementation. Self-determination theory and theories of organisational change are used to interpret the data. DISCUSSION: The research adds to the current knowledge base related to worker motivation and uptake of workplace practice. It describes a structured protocol that aims to enhance worker autonomy for imposed workplace practices. The research will inform how best to measure and conceptualise transfer. These findings will apply particularly to contexts where individuals are not ‘volunteers’ in requisite change processes. TRIAL REGISTRATION: ACTRN: ACTRN12613000353796

    The Vein Patterning 1 (VEP1) Gene Family Laterally Spread through an Ecological Network

    Get PDF
    Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic α-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from νe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore