158 research outputs found

    Toll like receptors gene expression of human keratinocytes cultured of severe burn injury

    Get PDF
    PURPOSE: To evaluate the expression profile of genes related to Toll Like Receptors (TLR) pathways of human Primary Epidermal keratinocytes of patients with severe burns.METHODS: After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific TLR pathways PCR Arrays plates (SA Biosciences).RESULTS: After the analysis of gene expression we found that 21% of these genes were differentially expressed, of which 100% were repressed or hyporegulated. Among these, the following genes (fold decrease): HSPA1A (-58), HRAS (-36), MAP2K3 (-23), TOLLIP (-23), RELA (-18), FOS (-16), and TLR1 (-6.0).CONCLUSIONS: This study contributes to the understanding of the molecular mechanisms related to TLR pathways and underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)UNIFESP-EPM Department of SurgeryUNIFESP-EPMUNIFESPUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Department of SurgeryUNIFESP, EPM, Department of SurgeryUNIFESP-EPMUNIFESP, EPM, Department of SurgeryFAPESP: 2011/12945-4FAPESP: 2013/10.905-0SciEL

    A streptococcus pneumoniae lineage usually associated with pneumococcal conjugate vaccine (PCV) serotypes is the most common cause of serotype 35B invasive disease in South Africa, following routine use of PCV

    Get PDF
    Pneumococcal serotype 35B is an important non-conjugate vaccine (non-PCV) serotype. Its continued emergence, post-PCV7 in the USA, was associated with expansion of a pre-existing 35B clone (clonal complex [CC] 558) along with post-PCV13 emergence of a non-35B clone previously associated with PCV serotypes (CC156). This study describes lineages circulating among 35B isolates in South Africa before and after PCV introduction. We also compared 35B isolates belonging to a predominant 35B lineage in South Africa (GPSC5), with isolates belonging to the same lineage in other parts of the world. Serotype 35B isolates that caused invasive pneumococcal disease in South Africa in 2005-2014 were characterized by whole-genome sequencing (WGS). Multi-locus sequence types and global pneumococcal sequence clusters (GPSCs) were derived from WGS data of 63 35B isolates obtained in 2005-2014. A total of 262 isolates that belong to GPSC5 (115 isolates from South Africa and 147 from other countries) that were sequenced as part of the global pneumococcal sequencing (GPS) project were included for comparison. Serotype 35B isolates from South Africa were differentiated into seven GPSCs and GPSC5 was most common (49 %, 31/63). While 35B was the most common serotype among GPSC5/CC172 isolates in South Africa during the PCV13 period (66 %, 29/44), 23F was the most common serotype during both the pre-PCV (80 %, 37/46) and PCV7 period (32 %, 8/25). Serotype 35B represented 15 % (40/262) of GPSC5 isolates within the global GPS database and 75 % (31/40) were from South Africa. The predominance of the GPSC5 lineage within non-vaccine serotype 35B, is possibly unique to South Africa and warrants further molecular surveillance of pneumococci

    Effects of PACK guide training on the management of asthma and chronic obstructive pulmonary disease by primary care clinicians: a pragmatic cluster randomised controlled trial in Florianópolis, Brazil

    Get PDF
    Introduction The Practical Approach to Care Kit (PACK) guide was localised for Brazil, where primary care doctors and nurses were trained to use it. Methods Twenty-four municipal clinics in Florianópolis were randomly allocated to receive outreach training and the guide, and 24 were allocated to receive only the guide. 6666 adult patients with asthma or chronic obstructive pulmonary disease (COPD) were enrolled, and trial outcomes were measured over 12 months, using electronic medical records. The primary outcomes were composite scores of treatment changes and spirometry, and new asthma and COPD diagnosis rates. Results Asthma scores in 2437 intervention group participants were higher (74.8%, 20.4% and 4.8% with scores of 0, 1 and 2, respectively) than in 2633 control group participants (80.0%, 16.8% and 3.2%) (OR for higher score 1.32, 95% CI 1.08 to 1.61, p=0.006). Adjusted for asthma scores recorded in each clinic before training started, the OR was 1.24 (95% CI 1.03 to 1.50, p=0.022). COPD scores in 1371 intervention group participants (77.7%, 17.9% and 4.3% with scores of 0, 1 and 2) did not differ from those in 1181 control group participants (80.5%, 15.8% and 3.7%) (OR 1.21, 95% CI 0.94 to 1.55, p=0.142). Rates of new asthma and COPD diagnoses, and hospital admission, and indicators of investigation, diagnosis and treatment of comorbid cardiovascular disease, diabetes and depression, and tobacco cessation did not differ between trial arms. Conclusion PACK training increased guideline-based treatment and spirometry for asthma but did not affect COPD or comorbid conditions, or diagnosis rates

    Comparative Genomic Analysis and In Vivo Modeling of Streptococcus pneumoniae ST3081 and ST618 Isolates Reveal Key Genetic and Phenotypic Differences Contributing to Clonal Replacement of Serotype 1 in The Gambia

    Get PDF
    Streptococcus pneumoniae serotype 1 is one of the leading causes of invasive pneumococcal disease (IPD) in West Africa, with ST618 being the dominant cause of IPD in The Gambia. Recently however, a rare example of clonal replacement was observed, where the ST3081 clone of serotype 1 replaced the predominant ST618 clone as the main cause of IPD. In the current study, we sought to find the reasons for this unusual replacement event. Using whole-genome sequence analysis and clinically relevant models of in vivo infection, we identified distinct genetic and phenotypic characteristics of the emerging ST3081 clone. We show that ST3081 is significantly more virulent than ST618 in models of invasive pneumonia, and is carried at higher densities than ST618 during nasopharyngeal carriage. We also observe sequence type-specific accessory genes and a unique sequence type-specific fixed mutation in the pneumococcal toxin pneumolysin, which is associated with increased hemolytic activity in ST3081 and may contribute to increased virulence in this clone. Our study provides evidence that, within the same serotype 1 clonal complex, biological properties differ significantly from one clone to another in terms of virulence and host invasiveness, and that these differences may be the result of key genetic differences within the genome

    Anaerobic utilization of pectinous substrates at extremely haloalkaline conditions by Natranaerovirga pectinivora gen. nov., sp. nov., and Natranaerovirga hydrolytica sp. nov., isolated from hypersaline soda lakes

    Get PDF
    Anaerobic enrichments at pH 10, with pectin and polygalacturonates as substrates and inoculated with samples of sediments of hypersaline soda lakes from the Kulunda Steppe (Altai, Russia) demonstrated the potential for microbial pectin degradation up to soda-saturating conditions. The enrichments resulted in the isolation of six strains of obligately anaerobic fermentative bacteria, which represented a novel deep lineage within the order Clostridiales loosely associated with the family Lachnospiraceae. The isolates were rod-shaped and formed terminal round endospores. One of the striking features of the novel group is a very narrow substrate spectrum for growth, restricted to galacturonic acid and its polymers (e.g. pectin). Acetate and formate were the final fermentation products. Growth was possible in a pH range from 8 to 10.5, with an optimum at pH 9.5–10, and in a salinity range from 0.2 to 3.5 M Na+. On the basis of unique phenotypic properties and distinct phylogeny, the pectinolytic isolates are proposed to be assigned to a new genus Natranaerovirga with two species N. hydrolytica (APP2T=DSM24176T=UNIQEM U806T) and N. pectinivora (AP3T=DSM24629T=UNIQEM U805T)

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    The global meningitis genome partnership.

    Get PDF
    Genomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data

    Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study

    Get PDF
    Background: Invasive pneumococcal disease remains an important health priority owing to increasing disease incidence caused by pneumococci expressing non-vaccine serotypes. We previously defined 621 Global Pneumococcal Sequence Clusters (GPSCs) by analysing 20 027 pneumococcal isolates collected worldwide and from previously published genomic data. In this study, we aimed to investigate the pneumococcal lineages behind the predominant serotypes, the mechanism of serotype replacement in disease, as well as the major pneumococcal lineages contributing to invasive pneumococcal disease in the post-vaccine era and their antibiotic resistant traits. / Methods: We whole-genome sequenced 3233 invasive pneumococcal disease isolates from laboratory-based surveillance programmes in Hong Kong (n=78), Israel (n=701), Malawi (n=226), South Africa (n=1351), The Gambia (n=203), and the USA (n=674). The genomes represented pneumococci from before and after pneumococcal conjugate vaccine (PCV) introductions and were from children younger than 3 years. We identified predominant serotypes by prevalence and their major contributing lineages in each country, and assessed any serotype replacement by comparing the incidence rate between the pre-PCV and PCV periods for Israel, South Africa, and the USA. We defined the status of a lineage as vaccine-type GPSC (≥50% 13-valent PCV [PCV13] serotypes) or non-vaccine-type GPSC (>50% non-PCV13 serotypes) on the basis of its initial serotype composition detected in the earliest vaccine period to measure their individual contribution toward serotype replacement in each country. Major pneumococcal lineages in the PCV period were identified by pooled incidence rate using a random effects model. / Findings: The five most prevalent serotypes in the PCV13 period varied between countries, with only serotypes 5, 12F, 15B/C, 19A, 33F, and 35B/D common to two or more countries. The five most prevalent serotypes in the PCV13 period varied between countries, with only serotypes 5, 12F, 15B/C, 19A, 33F, and 35B/D common to two or more countries. These serotypes were associated with more than one lineage, except for serotype 5 (GPSC8). Serotype replacement was mainly mediated by expansion of non-vaccine serotypes within vaccine-type GPSCs and, to a lesser extent, by increases in non-vaccine-type GPSCs. A globally spreading lineage, GPSC3, expressing invasive serotypes 8 in South Africa and 33F in the USA and Israel, was the most common lineage causing non-vaccine serotype invasive pneumococcal disease in the PCV13 period. We observed that same prevalent non-vaccine serotypes could be associated with distinctive lineages in different countries, which exhibited dissimilar antibiotic resistance profiles. In non-vaccine serotype isolates, we detected significant increases in the prevalence of resistance to penicillin (52 [21%] of 249 vs 169 [29%] of 575, p=0·0016) and erythromycin (three [1%] of 249 vs 65 [11%] of 575, p=0·0031) in the PCV13 period compared with the pre-PCV period. / Interpretation: Globally spreading lineages expressing invasive serotypes have an important role in serotype replacement, and emerging non-vaccine serotypes associated with different pneumococcal lineages in different countries might be explained by local antibiotic-selective pressures. Continued genomic surveillance of the dynamics of the pneumococcal population with increased geographical representation in the post-vaccine period will generate further knowledge for optimising future vaccine design. / Funding: Bill & Melinda Gates Foundation, Wellcome Sanger Institute, and the US Centers for Disease Control

    International links between Streptococcus pneumoniae vaccine serotype 4 sequence type (ST) 801 in Northern European shipyard outbreaks of invasive pneumococcal disease

    Get PDF
    Background: Pneumococcal disease outbreaks of vaccine preventable serotype 4 sequence type (ST)801 in shipyards have been reported in several countries. We aimed to use genomics to establish any international links between them. Methods: Sequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating. Results: Outbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0–2 SNPs) with the common ancestor dated around 2017. Conclusion: The total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination
    corecore