225 research outputs found

    An adaptive route choice model for integrated fixed and flexible transit systems

    Full text link
    Over the past decade, there has been a surge of interest in the transport community in the application of agent-based simulation models to evaluate flexible transit solutions characterized by different degrees of short-term flexibility in routing and scheduling. A central modeling decision in the development of an agent-based simulation model for the evaluation of flexible transit is how one chooses to represent the mode- and route-choices of travelers. The real-time adaptive behavior of travelers is intuitively important to model in the presence of a flexible transit service, where the routing and scheduling of vehicles is highly dependent on supply-demand dynamics at a closer to real-time temporal resolution. We propose a utility-based transit route-choice model with representation of within-day adaptive travel behavior and between-day learning where station-based fixed-transit, flexible-transit, and active-mode alternatives may be dynamically combined in a single path. To enable experimentation, this route-choice model is implemented within an agent-based dynamic public transit simulation framework. Model properties are first explored in a choice between fixed- and flexible-transit modes for a toy network. The framework is then applied to illustrate level-of-service trade-offs and analyze traveler mode choices within a mixed fixed- and flexible transit system in a case study based on a real-life branched transit service in Stockholm, Sweden.Comment: 33 pages, 9 figures, preprin

    From microbial gene essentiality to novel antimicrobial drug targets

    Get PDF
    Background: Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials. Result: Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept. Conclusion: Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials

    DaZZ Maatwerk 2009

    Get PDF
    Van der Klink, M., Aarts, Th., Van den Heuvel-Munter, A., Sijstermans-Burghout, I., & Verharen, M. (2010). DaZZ Maatwerk 2009. Verslag van de werkzaamheden Werkgroep Maatwerk van het DaZZ project. Heerlen Nederland: Open Universiteit Nederland, DaZZ-project.Dit rapport bevat een verslag van de werkzaamheden van de Werkgroep DaZZ waarin medewerkers van de OUNL, Hogeschool Zuyd, Hogeschool Zeeland en Stenden Hogeschool met elkaar samen hebben gewerkt aan de ontwikkeling en beproeving van een instrument om het verkennen van de mogelijkheden voor flexibilisering van hoger onderwijs op gang te brengenDe werkzaamheden van de werkgroep zijn mogelijk gemaakt door een subsidie van de Projectdirectie Werken & Lere

    Comparative Genomic Analysis and In Vivo Modeling of Streptococcus pneumoniae ST3081 and ST618 Isolates Reveal Key Genetic and Phenotypic Differences Contributing to Clonal Replacement of Serotype 1 in The Gambia

    Get PDF
    Streptococcus pneumoniae serotype 1 is one of the leading causes of invasive pneumococcal disease (IPD) in West Africa, with ST618 being the dominant cause of IPD in The Gambia. Recently however, a rare example of clonal replacement was observed, where the ST3081 clone of serotype 1 replaced the predominant ST618 clone as the main cause of IPD. In the current study, we sought to find the reasons for this unusual replacement event. Using whole-genome sequence analysis and clinically relevant models of in vivo infection, we identified distinct genetic and phenotypic characteristics of the emerging ST3081 clone. We show that ST3081 is significantly more virulent than ST618 in models of invasive pneumonia, and is carried at higher densities than ST618 during nasopharyngeal carriage. We also observe sequence type-specific accessory genes and a unique sequence type-specific fixed mutation in the pneumococcal toxin pneumolysin, which is associated with increased hemolytic activity in ST3081 and may contribute to increased virulence in this clone. Our study provides evidence that, within the same serotype 1 clonal complex, biological properties differ significantly from one clone to another in terms of virulence and host invasiveness, and that these differences may be the result of key genetic differences within the genome

    Structural and Functional Insights into the Pilotin-Secretin Complex of the Type II Secretion System

    Get PDF
    Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the crystal structure of the pilotin of the T2SS that comprises an arrangement of four Ξ±-helices profoundly different from previously solved pilotins from the T3SS and T4P and known four Ξ±-helix bundles. The architecture can be described as the insertion of one Ξ±-helical hairpin into a second open Ξ±-helical hairpin with bent final helix. NMR, CD and fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin. These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of these C-terminal residues in vivo

    Design of the EXercise Intervention after Stem cell Transplantation (EXIST) study: a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of an individualized high intensity physical exercise program on fitness and fatigue in patients with multiple myeloma or (non-) Hodgkin's lymphoma treated with high dose chemotherapy and autologous stem cell transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of high-dose chemotherapy combined with autologous stem cell transplantation has improved the outcome of hematologic malignancies. Nevertheless, this treatment can cause persistent fatigue and a reduced global quality of life, role and physical function. Physical exercise interventions may be beneficial for physical fitness, fatigue and quality of life. However, the trials conducted so far to test the effects of physical exercise interventions in this group of patients were of poor to moderate methodological quality and economic evaluations are lacking. Hence there is need for a rigorous, appropriately controlled assessment of the effectiveness of exercise programs in these patients. The aims of the present study are (1) to determine the effectiveness of an individualized high intensity strength and interval training program with respect to physiological and psychological health status in patients with multiple myeloma or (non-)Hodgkin's lymphoma who have recently undergone high dose chemotherapy followed by autologous stem cell transplantation; and (2) to evaluate the cost-effectiveness of this program.</p> <p>Methods</p> <p>A multicenter, prospective, single blind randomized controlled trial will be performed. We aim to recruit 120 patients within an inclusion period of 2 years at 7 hospitals in the Netherlands. The patients will be randomly assigned to one of two groups: (1) intervention plus usual care; or (2) usual care. The intervention consists of an 18-week individualized supervised high-intensity exercise program and counselling. The primary outcomes (cardiorespiratory fitness, muscle strength and fatigue) and secondary outcomes are assessed at baseline, at completion of the intervention and at 12 months follow-up.</p> <p>Discussion</p> <p>The strengths of this study include the solid trial design with clearly defined research groups and standardized outcome measures, the inclusion of an economic evaluation and the inclusion of both resistance and endurance exercise in the intervention program.</p> <p>Trial registration</p> <p>This study is registered at the Netherlands Trial Register (NTR2341)</p

    Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions

    Get PDF
    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes

    Identification of Chromosomal Genes in Yersinia pestis that Influence Type III Secretion and Delivery of Yops into Target Cells

    Get PDF
    Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague

    Viewpoint : The growing role of dynamic modelling

    No full text
    QC 20120215</p
    • …
    corecore