150 research outputs found

    Properties of the Young Milky Way Globular Cluster Whiting 1 from Near-Infrared Photometry

    Full text link
    Whiting 1 is a member of the fast-growing group of young globular clusters in the Milky Way halo. Preliminary estimates of its fundamental parameters have been provided using optical photometry and low resolution spectroscopy. In an attempt to strengthen our knowledge of Whiting 1, in this study we employ a complementary approach. Isochrone fitting method was applied on the Near-Infrared Color-Magnitude Diagram and yields an age t=5.7±\pm0.3 Gyr, metallicity zz=0.006±\pm0.001 ([Fe/H]=−-0.5±\pm0.1) and distance modulus (m−M)0(m-M)_0=17.48±\pm0.10. Our results confirm that Whiting 1 is a young and moderately metal-rich globular cluster. It is one of the youngest from the Sgr dSph. We fitted an Elson, Fall and Freeman (EFF) profile to the near-infrared number counts, and measured cluster core radius rcr_c=9.1′′{\prime\prime}±\pm3.9′′{\prime\prime}. Two probable eclipsing variables in the cluster were found from multi-epoch VV band photometry. Finally, an unknown galaxy cluster was identified on our KK vs. (J−K)(J-K) color-magnitude diagram. It has a redshift z∼\sim1, and it is located at about 1′{\prime} from the center of Whiting 1 at αJ2000=02h02m56.6s\alpha_{J2000}=02^{h} 02^{m} 56.6^{s}, δJ2000=−03∘16′09′′\delta_{J2000}=-03^{\circ} 16{\prime} 09{\prime\prime}, contaminating the cluster photometry.Comment: Accepted for publication in MNRAS, 6 pages, 8 figure

    Optical monitoring of the z=4.40 quasar Q 2203+292

    Full text link
    We report Cousins R-band monitoring of the high-redshift (z=4.40) radio quiet quasar Q 2203+292 from May 1999 to October 2007. The quasar shows maximum peak-to-peak light curve amplitude of ~0.3 mag during the time of our monitoring, and ~0.9 mag when combined with older literature data. The rms of a fit to the light curve with a constant is 0.08 mag and 0.2 mag, respectively. The detected changes are at ~3-sigma level. The quasar was in a stable state during the recent years and it might have undergone a brightening event in the past. The structure function analysis concluded that the object shows variability properties similar to those of the lower redshift quasars. We set a lower limit to the Q 2203+292 broad line region mass of 0.3-0.4 M_odot. Narrow-band imaging search for redshifted Ly_alpha from other emission line objects at the same redshift shows no emission line objects in the quasar vicinity.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    The VMC Survey - VI. Quasars behind the Magellanic system

    Full text link
    The number and spatial distribution of confirmed quasi-stellar objects (QSOs) behind the Magellanic system is limited. This undermines their use as astrometric reference objects for different types of studies. We have searched for criteria to identify candidate QSOs using observations from the VISTA survey of the Magellanic Clouds system (VMC) that provides photometry in the YJKs bands and 12 epochs in the Ks band. The (Y-J) versus (J-Ks) diagram has been used to distinguish QSO candidates from Milky Way stars and stars of the Magellanic Clouds. Then, the slope of variation in the Ks band has been used to identify a sample of high confidence candidates. These criteria were developed based on the properties of 117 known QSOs presently observed by the VMC survey. VMC YJKs magnitudes and Ks light-curves of known QSOs behind the Magellanic system are presented. About 75% of them show a slope of variation in Ks>10^-4 mag/day and the shape of the light-curve is in general irregular and without any clear periodicity. The number of QSO candidates found in tiles including the South Ecliptic Pole and the 30 Doradus regions is 22 and 26, respectively, with a ~20% contamination by young stellar objects, planetary nebulae, stars and normal galaxies. By extrapolating the number of QSO candidates to the entire VMC survey area we expect to find about 1200 QSOs behind the LMC, 400 behind the SMC, 200 behind the Bridge and 30 behind the Stream areas, but not all will be suitable for astrometry. Further, the Ks band light-curves can help support investigations of the mechanism responsible for the variations.Comment: 17 pages, 15 figures, replaced with accepted version by Astronomy & Astrophysic

    X-ray monitoring of classical novae in the central region of M 31. II. Autumn and winter 2007/2008 and 2008/2009

    Get PDF
    [Abridged] Classical novae (CNe) represent the major class of supersoft X-ray sources (SSSs) in the central region of our neighbouring galaxy M 31. We performed a dedicated monitoring of the M 31 central region with XMM-Newton and Chandra between Nov 2007 and Feb 2008 and between Nov 2008 and Feb 2009 respectively, in order to find SSS counterparts of CNe, determine the duration of their SSS phase and derive physical outburst parameters. We systematically searched our data for X-ray counterparts of CNe and determined their X-ray light curves and spectral properties. We detected in total 17 X-ray counterparts of CNe in M 31, only four of which were known previously. These latter sources are still active 12.5, 11.0, 7.4 and 4.8 years after the optical outburst. From the 17 X-ray counterparts 13 were classified as SSSs. Four novae displayed short SSS phases (< 100 d). Based on these results and previous studies we compiled a catalogue of all novae with SSS counterparts in M 31 known so far. We used this catalogue to derive correlations between the following X-ray and optical nova parameters: turn-on time, turn-off time, effective temperature (X-ray), t2 decay time and expansion velocity of the ejected envelope (optical). Furthermore, we found a first hint for the existence of a difference between SSS parameters of novae associated with the stellar populations of the M 31 bulge and disk. Additionally, we conducted a Monte Carlo Markov Chain simulation on the intrinsic fraction of novae with SSS phase. This simulation showed that the relatively high fraction of novae without detected SSS emission might be explained by the inevitably incomplete coverage with X-ray observations in combination with a large fraction of novae with short SSS states, as expected from the WD mass distribution. In order to verify our results with an increased sample further monitoring observations are needed.Comment: 31 pages, 23 figures, 10 tables; submitted to A&

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    Get PDF
    We report on long-term multiwavelengthmonitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007–2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ -ray fluxes is very variable. The γ -ray flux variations show a fair correlation with the optical ones starting from 2012.We analyse spectropolarimetric data and find wavelengthdependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA.We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.http://10.0.4.69/mnras/stx2185Accepted manuscrip

    WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007-2008. Unveiling different emission components

    Get PDF
    In 2007-2008 we carried out a new multiwavelength campaign of the Whole Earth Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the XMM-Newton satellite, to study its emission properties. The source was monitored in the optical-to-radio bands by 37 telescopes. The brightness level was relatively low. Some episodes of very fast variability were detected in the optical bands. The X-ray spectra are well fitted by a power law with photon index of about 2 and photoelectric absorption exceeding the Galactic value. However, when taking into account the presence of a molecular cloud on the line of sight, the data are best fitted by a double power law, implying a concave X-ray spectrum. The spectral energy distributions (SEDs) built with simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations suggest that the peak of the synchrotron emission lies in the near-IR band, and show a prominent UV excess, besides a slight soft-X-ray excess. A comparison with the SEDs corresponding to previous observations with X-ray satellites shows that the X-ray spectrum is extremely variable. We ascribe the UV excess to thermal emission from the accretion disc, and the other broad-band spectral features to the presence of two synchrotron components, with their related SSC emission. We fit the thermal emission with a black body law and the non-thermal components by means of a helical jet model. The fit indicates a disc temperature greater than 20000 K and a luminosity greater than 6 x 10^44 erg/s.Comment: 11 pages, 7 figures, accepted for publication in A&

    A new activity phase of the blazar 3C 454.3. Multifrequency observations by the WEBT and XMM-Newton in 2007-2008

    Full text link
    We present and analyse the WEBT multifrequency observations of 3C 454.3 in the 2007-2008 observing season, including XMM-Newton observations and near-IR spectroscopic monitoring, and compare the recent emission behaviour with the past one. In the optical band we observed a multi-peak outburst in July-August 2007, and other faster events in November 2007 - February 2008. During these outburst phases, several episodes of intranight variability were detected. A mm outburst was observed starting from mid 2007, whose rising phase was contemporaneous to the optical brightening. A slower flux increase also affected the higher radio frequencies, the flux enhancement disappearing below 8 GHz. The analysis of the optical-radio correlation and time delays, as well as the behaviour of the mm light curve, confirm our previous predictions, suggesting that changes in the jet orientation likely occurred in the last few years. The historical multiwavelength behaviour indicates that a significant variation in the viewing angle may have happened around year 2000. Colour analysis reveals a complex spectral behaviour, which is due to the interplay of different emission components. All the near-IR spectra show a prominent Halpha emission line, whose flux appears nearly constant. The analysis of the XMM-Newton data indicates a correlation between the UV excess and the soft-X-ray excess, which may represent the head and the tail of the big blue bump, respectively. The X-ray flux correlates with the optical flux, suggesting that in the inverse-Compton process either the seed photons are synchrotron photons at IR-optical frequencies or the relativistic electrons are those that produce the optical synchrotron emission. The X-ray radiation would thus be produced in the jet region from where the IR-optical emission comes.Comment: 10 pages, 12 figures (7 included in the text, 5 in GIF format), accepted for publication in A&

    Radio-to-UV monitoring of AO 0235+164 by the WEBT and Swift during the 2006--2007 outburst

    Get PDF
    The blazar AO 0235+164 was claimed to show a quasi-periodic behaviour in the radio and optical bands. Moreover, an extra emission component contributing to the UV and soft X-ray flux was detected, whose nature is not yet clear. A predicted optical outburst was observed in late 2006/early 2007. We here present the radio-to-optical WEBT light curves during the outburst, together with UV data acquired by Swift in the same period. We found the optical outburst to be as strong as the big outbursts of the past: starting from late September 2006, a brightness increase of 5 mag led to the outburst peak in February 19-21, 2007. We also observed an outburst at mm and then at cm wavelengths, with an increasing time delay going toward lower frequencies during the rising phase. Cross-correlation analysis indicates that the 1 mm and 37 GHz flux variations lagged behind the R-band ones by about 3 weeks and 2 months, respectively. These short time delays suggest that the corresponding jet emitting regions are only slightly separated and/or misaligned. In contrast, during the outburst decreasing phase the flux faded contemporaneously at all cm wavelengths. This abrupt change in the emission behaviour may suggest the presence of some shutdown mechanism of intrinsic or geometric nature. The behaviour of the UV flux closely follows the optical and near-IR one. By separating the synchrotron and extra component contributions to the UV flux, we found that they correlate, which suggests that the two emissions have a common origin.Comment: 9 pages, 7 figures, in press for Astronomy and Astrophysic

    WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase. Detection of the little and big blue bumps

    Get PDF
    The blazar 3C 454.3 underwent an unprecedented optical outburst in spring 2005. This was first followed by a mm and then by a cm radio outburst, which peaked in February 2006. We report on follow-up observations by the WEBT to study the multiwavelength emission in the post-outburst phase. XMM-Newton observations on July and December 2006 added information on the X-ray and UV fluxes. The source was in a faint state. The radio flux at the higher frequencies showed a fast decreasing trend, which represents the tail of the big radio outburst. It was followed by a quiescent state, common at all radio frequencies. In contrast, moderate activity characterized the NIR and optical light curves, with a progressive increase of the variability amplitude with increasing wavelength. We ascribe this redder-when-brighter behaviour to the presence of a "little blue bump" due to line emission from the broad line region, which is clearly visible in the source SED during faint states. Moreover, the data from the XMM-Newton OM reveal a rise of the SED in the UV, suggesting the existence of a "big blue bump" due to thermal emission from the accretion disc. The X-ray spectra are well fitted with a power-law model with photoelectric absorption, possibly larger than the Galactic one. However, the comparison with previous X-ray observations would imply that the amount of absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum presents a curvature, which may depend on the X-ray brightness. In this case, two scenarios are possible.Comment: 9 pages, 7 figures, accepted for publication in A&

    Meshalkin National Medical Research Center

    Get PDF
    We present three cases of successful transatrial transcatheter valve-in-valve implantation in patients with bioprosthetic mitral valve dysfunction. Patients with a high surgical risk, with severe heart failure due to bioprosthetic mitral valve dysfunction, were implanted with transcatheter prostheses using the transatrial approach.Transesophageal echocardiography and fluoroscopy-guided transcatheter mitral prosthetic valve positioning was performed. With a cardiac pacing at 180 bpm, a transcatheter valve was implanted. The transcatheter valves functioned properly after surgery. The patients were discharged in satisfactory condition
    • …
    corecore