352 research outputs found

    Nonparaphilic Sexual Addiction

    Get PDF

    Ethical Considerations in Counselling the Homosexually-Oriented Client

    Get PDF

    The M31 population of supersoft sources

    Get PDF
    The 1991 ROSAT PSPC M31 X-ray point source catalog has been screened in order to set up a sample of candidate supersoft sources in this galaxy, additional to the 16 supersoft sources of Supper et al. (1997). 26 candidates have been found. Absorbing hydrogen column densities, effective temperatures and white dwarf masses (assuming the sources are on the stability line of surface nuclear burning) are derived. An observed white dwarf mass distribution is derived which indicates that the masses are constrained to values above 0.90 solar masses. The entire population of supersoft sources in M31 is estimated taking a theoretical white dwarf mass distribution into account, assuming that the observationally derived sample is restricted to white dwarf masses above 0.90 solar, and taking into account that the gas and the source population have a different scale height. A total number of at least 200-500 and at most 6,000-15,000 sources is deduced depending on the used galaxy N_H model, making use of the population synthesis calculation of Yungelson (1996). The spatial distribution favors a disk (or spiral-arm) dominated young stellar population with a ratio of 1/(4-7) of bulge/disk systems. Assuming that all supersoft sources with masses in excess of 0.5 solar masses are progenitors of supernovae of type Ia, a SN Ia rate of (0.8-7) 10^-3 yr^-1 is derived for M31 based on these progenitors. Supersoft sources might account for 20-100% of the total SN Ia rate in a galaxy like M31

    X-ray stellar population of the LMC

    Full text link
    In the study of stars, the high energy domain occupies a place of choice, since it is the only one able to directly probe the most violent phenomena: indeed, young pre-main sequence objects, hot massive stars, or X-ray binaries are best revealed in X-rays. However, previously available X-ray observatories often provided only crude information on individual objects in the Magellanic Clouds. The advent of the highly efficient X-ray facilities XMM-Newton and Chandra has now dramatically increased the sensitivity and the spatial resolution available to X-ray astronomers, thus enabling a fairly easy determination of the properties of individual sources in the LMC.Comment: Invited review at IAUS 256 "The Magellanic system: stars, gas and galaxies" (July 2008, Keele, UK); proceedings edited by J. Th. van Loon and J. M. Oliveira; 10 pages, 1 figure (in jpg

    A BeppoSAX observation of the supersoft source 1E 0035.4-7230

    Get PDF
    Results from a 37,000 s BeppoSAX Low-Energy Concentrator Spectrometer (LECS) observation of the supersoft source SMC 13 (=1E 0035.4-7230) in the Small Magellanic Cloud are reported. The BeppoSAX spectrum is fitted either with a blackbody spectrum with an effective temperature kT = 26-58 eV, an LTE white dwarf atmosphere spectrum with kT = 35-50 eV, or a non-LTE white dwarf atmosphere spectrum with kT = 25-32 eV. The bolometric luminosity is < 8 10^37 erg s-1 and < 3 10^37 erg s^-1 for the LTE and the non-LTE spectrum. We also applied a spectral fit to combined spectra obtained with BeppoSAX LECS and with ROSAT PSPC. The kT derived for the non-LTE spectrum is 27-29 eV, the bolometric luminosity is 1.1-1.2 10^37 erg s^-1. We can exclude any spectrally hard component with a luminosity > 2 10^35 erg s^-1 (for a bremmstrahlung with a temperature of 0.5 keV) at a distance of 60 kpc. The LTE temperature is therefore in the range 5.5+/-0.2 10^5 K and the non-LTE temperature in the range 3.25+/-0.16 10^5 K. Assuming the source is on the stability line for atmospheric nuclear burning, we constrain the white dwarf mass from the LTE and the non-LTE fit to ~1.1 M-solar and ~0.9 M-solar respectively. However, the temperature and luminosity derived with the non-LTE model for 1E 0035.4-7230 is consistent with a lower mass M~0.6-0.7 M-solar white dwarf as predicted by Sion and Starrfield (1994). At the moment, neither of these two alternatives for the white dwarf mass can be excluded.Comment: 6 pages, accepted by A&A March 30th 199

    A ROSAT PSPC X-Ray Survey of the Small Magellanic Cloud

    Get PDF
    We present the results of a systematic search for point-like and moderately extended soft (0.1-2.4 keV) X-ray sources in a raster of nine pointings covering a field of 8.95 deg^2 and performed with the ROSAT PSPC between October 1991 and October 1993 in the direction of the Small Magellanic Cloud. We detect 248 objects which we include in the first version of our SMC catalogue of soft X-ray sources. We set up seven source classes defined by selections in the count rate, hardness ratio and source extent. We find five high luminosity super-soft sources (1E 0035.4-7230, 1E 0056.8-7146, RX J0048.4-7332, RX J0058.6-7146 and RX J0103-7254), one low-luminosity super-soft source RX J0059.6-7138 correlating with the planetary nebula L357, 51 candidate hard X-ray binaries including eight bright hard X-ray binary candidates, 19 supernova remnants, 19 candidate foreground stars and 53 candidate background active galactic nuclei (and quasars). We give a likely classification for ~60% of the catalogued sources. The total count rate of the detected point-like and moderately extended sources in our catalogue is 6.9+/-0.3 s^-1, comparable to the background subtracted total rate from the integrated field of ~6.1+/-0.1 s^-1.Comment: Accepted by A&AS, 13 pages, 2 Postscript figure
    corecore