159 research outputs found
Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe -decay searches
A pulse-shape discrimination method based on artificial neural networks was
applied to pulses simulated for different background, signal and signal-like
interactions inside a germanium detector. The simulated pulses were used to
investigate variations of efficiencies as a function of used training set. It
is verified that neural networks are well-suited to identify background pulses
in true-coaxial high-purity germanium detectors. The systematic uncertainty on
the signal recognition efficiency derived using signal-like evaluation samples
from calibration measurements is estimated to be 5\%. This uncertainty is due
to differences between signal and calibration samples
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
Limits on uranium and thorium bulk content in GERDA Phase I detectors
Internal contaminations of U, U and Th in the bulk of
high purity germanium detectors are potential backgrounds for experiments
searching for neutrinoless double beta decay of Ge. The data from GERDA
Phase~I have been analyzed for alpha events from the decay chain of these
contaminations by looking for full decay chains and for time correlations
between successive decays in the same detector. No candidate events for a full
chain have been found. Upper limits on the activities in the range of a few
nBq/kg for Ra, Ac and Th, the long-lived daughter
nuclides of U, U and Th, respectively, have been
derived. With these upper limits a background index in the energy region of
interest from Ra and Th contamination is estimated which
satisfies the prerequisites of a future ton scale germanium double beta decay
experiment.Comment: 2 figures, 7 page
Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I
A search for neutrinoless decay processes accompanied with
Majoron emission has been performed using data collected during Phase I of the
GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del
Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were
searched for. No signals were found and lower limits of the order of 10
yr on their half-lives were derived, yielding substantially improved results
compared to previous experiments with Ge. A new result for the half-life
of the neutrino-accompanied decay of Ge with significantly
reduced uncertainties is also given, resulting in yr.Comment: 3 Figure
The background in the neutrinoless double beta decay experiment GERDA
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground
laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of
76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the
Q-value of the decay, Q_bb. To avoid bias in the signal search, the present
analysis does not consider all those events, that fall in a 40 keV wide region
centered around Q_bb. The main parameters needed for the neutrinoless double
beta decay analysis are described. A background model was developed to describe
the observed energy spectrum. The model contains several contributions, that
are expected on the basis of material screening or that are established by the
observation of characteristic structures in the energy spectrum. The model
predicts a flat energy spectrum for the blinding window around Q_bb with a
background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part
of the data not considered before has been used to test if the predictions of
the background model are consistent. The observed number of events in this
energy region is consistent with the background model. The background at Q-bb
is dominated by close sources, mainly due to 42K, 214Bi, 228Th, 60Co and alpha
emitting isotopes from the 226Ra decay chain. The individual fractions depend
on the assumed locations of the contaminants. It is shown, that after removal
of the known gamma peaks, the energy spectrum can be fitted in an energy range
of 200 kev around Q_bb with a constant background. This gives a background
index consistent with the full model and uncertainties of the same size
decay of Ge into excited states with GERDA Phase I
Two neutrino double beta decay of Ge to excited states of Se
has been studied using data from Phase I of the GERDA experiment. An array
composed of up to 14 germanium detectors including detectors that have been
isotopically enriched in Ge was deployed in liquid argon. The analysis
of various possible transitions to excited final states is based on coincidence
events between pairs of detectors where a de-excitation ray is
detected in one detector and the two electrons in the other.
No signal has been observed and an event counting profile likelihood analysis
has been used to determine Frequentist 90\,\% C.L. bounds for three
transitions: : 1.6 yr,
: 3.7 yr and : 2.3 yr. These bounds are more
than two orders of magnitude larger than those reported previously. Bayesian
90\,\% credibility bounds were extracted and used to exclude several models for
the transition
Limit on the Radiative Neutrinoless Double Electron Capture of Ar from GERDA Phase I
Neutrinoless double electron capture is a process that, if detected, would
give evidence of lepton number violation and the Majorana nature of neutrinos.
A search for neutrinoless double electron capture of Ar has been
performed with germanium detectors installed in liquid argon using data from
Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso
Laboratory of INFN, Italy. No signal was observed and an experimental lower
limit on the half-life of the radiative neutrinoless double electron capture of
Ar was established: 3.6 10 yr at 90 % C.I.Comment: 7 pages, 3 figure
Flux Modulations seen by the Muon Veto of the GERDA Experiment
The GERDA experiment at LNGS of INFN is equipped with an active muon veto.
The main part of the system is a water Cherenkov veto with 66~PMTs in the water
tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows
a seasonal modulation. Two effects have been identified which are caused by
secondary muons from the CNGS neutrino beam (2.2 %) and a temperature
modulation of the atmosphere (1.4 %). A mean cosmic muon rate of /(sm) was found in good agreement with other experiments at
LNGS at a depth of 3500~meter water equivalent.Comment: 7 pages, 6 figure
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
- …
