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Abstract A pulse-shape discrimination method based on
artificial neural networks was applied to pulses simulated
for different background, signal and signal-like interactions
inside a germanium detector. The simulated pulses were used
to investigate variations of efficiencies as a function of used
training set. It is verified that neural networks are well-suited
to identify background pulses in true-coaxial high-purity ger-
manium detectors. The systematic uncertainty on the signal
recognition efficiency derived using signal-like evaluation
samples from calibration measurements is estimated to be
5 %. This uncertainty is due to differences between signal
and calibration samples.

1 Introduction

Experiments searching for neutrinoless double beta (0νββ)
decay require an extremely low background level in the
region of interest around a few MeV. Compton scattered γ -
particles, originating from radioactive decays in the proxim-
ity of the detectors, are an important background contribution
at such energies.

In high-purity germanium (HPGe) experiments, these
interactions are often identified and removed from the sig-
nal data set through pulse-shape analysis (PSA). In order to
extract a half-life limit, the signal recognition efficiency has
to be known. Usually, experimentally obtained pulse-shape
libraries with signal-like events are used to obtain the signal
recognition efficiency. However, these evaluation libraries
can have energy-deposition topologies and event-location
distributions different to those of the signal searched for.
Efficiencies obtained like this can be systematically different
from the recognition efficiency for the real signal. Further-
more, the evaluation libraries used to derive the recognition
efficiencies often contain events of the wrong type, making
a direct determination of the efficiencies impossible.
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This paper presents investigations of the reproducibility
and systematic uncertainties of the efficiencies of pulse-
shape discrimination (PSD) using artificial neural networks
(ANNs) with libraries of simulated pulses. The general idea
of PSD using ANNs is introduced and the sources of pos-
sible systematic effects are discussed. The simulations and
the libraries used for the analysis are described as well as the
ANNs and the procedures used to train them. The stability
of the method against initial conditions and ANN topologies
is investigated. The focus is on the differences obtained in
recognition efficiencies using different evaluation libraries
and the associated systematic uncertainties.

2 Pulse-shape discrimination for HPGe detectors using
artificial neural-networks

The detection principle of semiconductor detectors is based
on the creation and detection of electron–hole pairs, i.e.
charge carriers, when radiation interacts with the detector
material. Charge-sensitive preamplifiers are commonly used
to detect the drifting charge carriers in large volume HPGe
detectors. The time structure of an event, the pulse-shape,
is defined by the mirror charge signal induced on the elec-
trodes as a function of time. The pulse length is given by the
time needed to fully collect the charges on the electrodes.
See e.g. [1,2] for a detailed description of the pulse creation
process.

For photons in the MeV range, the dominant interaction
process is Compton scattering. A photon with an energy of
one MeV has a mean free path of �3 cm in germanium.
Thus, photon-induced events with energies of about 2 MeV
are mostly composed of several energy deposits within
a HPGe detector, separated by a few centimeters. These
background-like events are referred to as multi-site events
(MSE). In contrast, electrons with the same energy have a
range of the order of millimeters and deposit their kinetic
energy “locally”. Signal-like events of this kind are referred
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to as single-site events (SSE). Note that in reality there also
exists “signal-like” background, i.e. background events that
have an indistinguishable event topology, such as the irre-
ducible background from 2νββ decay. The two electrons
emitted in 0νββ decay result predominantly in SSEs. Due
to Bremsstrahlung, a fraction of a few % of the 0νββ-decay
events become MSEs [3]. Events identified as MSE in the
energy region of interest are rejected as background.

Methods to distinguish between SSEs and MSEs in HPGe
detectors using ANNs were developed previously [4–6].
In most previous works, events from double escape peaks
(DEP) and full energy peaks (FEP) were used to create
training libraries of signal-like and background-like events,
respectively. These were obtained from calibration data
for which sources such as 228Th or 56Co were used. The
ANN efficiencies to correctly identify events are also typ-
ically extracted using evaluation libraries from calibration
measurements.

The efficiencies of PSD methods are not necessarily
homogeneous throughout the detector volume. For a realistic
evaluation, the spatial distribution of the events in a given test
library has to be taken into account. Especially, DEP events
will exhibit a non-uniformity in event location distribution
due to the topology of the events. If pair production occurs
in a coaxial HPGe at high radii, r , and height, z, i.e. close to
the extreme boundaries, the probability for the two 511 keV
γ -particles to escape is the highest. Hence, libraries of DEP
events have a higher event location density in these parts of
the detector (see Sect. 4 and Fig. 2). On the other hand, signal
events due to 0νββ decay (but also “signal-like” background
events due to 2νββ decay) are expected to be homogeneously
distributed. Using a library with an event location distribu-
tion different from the one expected for the signal can lead to
systematic biases. The main scope of this work is to address
this issue and estimate the uncertainties on the SSE recog-
nition efficiency evaluation arising from the use of different
training and evaluation sets.

3 Strategy

In order to quantify the uncertainties on the ANN event topol-
ogy recognition efficiencies, simulations are used. The signal
(background) recognition efficiencyη (ρ) of any PSD method
is defined as the probability that the method correctly iden-
tifies an SSE (MSE) from an event-library containing only
SSEs (MSEs).

Realistic SSE and MSE pulse-shape libraries always con-
tain events of both classes. Hence, the ANN method applied
to a library of predominantly SSE or MSE pulses will result
in a survival probability E or rejection probability R, defined
as the fraction of pulses in the library that are classified as
SSE or MSE, respectively:

E = η · SSSE + (1 − ρ) · SMSE ,

R = ρ · BMSE + (1 − η) · BSSE ,
(1)

where SSSE and SMSE are the fraction of SSEs and MSEs
in the SSE-library, respectively, and BMSE and BSSE are the
fraction of MSEs and SSEs in the MSE-library, respectively.
Using simulated pulses idealized libraries with SSSE = 1
and BSSE = 0 can be created. These libraries can be used
to determine η and ρ directly, as for this case E(SSSE =
1, SMSE = 0) = η and R(BMSE = 1, BSSE = 0) = ρ (see
Eq. 1).

In order to quantify the effect of non-homogeneous event-
location distributions, η for ANNs obtained with training
libraries with inhomogeneous event-location distributions
are compared to those obtained from libraries with a homo-
geneous event-location distribution.

The stability of the method is verified by training and
evaluating a set of ANNs with different initial weights of the
ANN synapses and with training libraries of different sizes.
Finally, the influence of the number of hidden layers and the
number of neurons in the ANN on η, is investigated.

Signal recognition efficiencies obtained using evaluation
libraries with event location distributions as expected and
different from the signal are then compared.

True-coaxial HPGe detectors are considered in this paper.
They have a simple radial electric field and, thus, have rel-
atively simple pulse shapes. Consequently, pulse-shapes of
this type of detectors have lower systematic uncertainty due
to smaller uncertainties in the field calculations compared
to detectors with more complex geometries. This makes this
type of detectors interesting for this analysis.

4 Libraries of simulated pulse shapes

HPGe detectors for low background experiments typically
have a radius, rmax, and a height of a few cm.1 The simu-
lated n-type true-coaxial germanium detector has a height
of 70 mm and rmax = 37.5 mm with the diameter of the
borehole being 10 mm. The dead layer due to the n+ con-
tact (outer surface) is less than 1 µm, while the dead layer
due to the p+ contact is 0.5 mm. The simulated geometry
describes an existing true-coaxial 18-fold segmented n-type
HPGe developed as a prototype detector [7] for the GERDA
experiment [8].

Photon and electron interactions for different libraries
were simulated within the MaGe framework [9], based
on Geant4 [10,11]. Pulse shapes were simulated for the
core electrode. Whenever individual energy deposits within

1 A polar coordinate system is used with the origin at the center of the
crystal and the z axis pointing upwards. In Cartesian coordinates, the
x- and y-axes coincide with the crystallographic 〈110〉 axes, while the
z axis coincides with the crystallographic 〈001〉 axis.
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Fig. 1 Pulse shapes for a SSEs
and b MSEs corresponding to
0νββ and FEP events,
respectively. The colored part of
the pulse indicates the time
during which the amplitude is
between 10 % and 90 % of the
maximum amplitude. The
displayed SSE pulses
correspond to events at different
radial positions, r . The MSE
pulses correspond to events with
two main energy depositions,
E1 and E2, with different radial
positions and energy ratios
E1/E2
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one event were separated by less than 0.1 mm they were
combined. Pulse shapes for the combined energy deposits
were simulated using pre-calculated electric and weighting
fields using the pulse-shape simulation package described in
[2]. The charge collection efficiency is either zero or one.
Charge cloud diffusion and self repulsion effects are not
taken into account in the simulation. The drift path anisotropy
originating from the axis effect, i.e. the dependence of
mobilities on the axis orientation, is accounted for in all
simulations.

The number of grid points for the electric- and weighting-
field calculations was 33(r) × 181(φ) × 71(z). The elec-
trically active impurities were assumed to be homogeneous
within the detector, with a density of 0.63 × 1010 cm−3. The
length of the simulated pulses is 1 µs. The step frequency of
the simulation is 1125 MHz, a multiple of 75 MHz to which
the pulses were resampled to take the effects of a typical DAQ
into account. Above 1 GHz, the step frequency is sufficient
to correctly describe trajectories [12,13].

The amplifier RC-integration constant was set to 20 ns,
corresponding to a bandwidth of about 10 MHz, while the
amplifier decay time was set to 50 µs. Each individual pulse
shape was convoluted with Gaussian noise, σ = 6 keV. The
results presented in this work do not change when simulated
pulses with no noise are used, i.e. the efficiencies obtained
are within the uncertainties quoted in the following. SSE
and MSE pulses take on a wide variety of shapes as shown
in Fig. 1. It is not trivial to interpret the pulse shapes and
distinguish between SSEs and MSEs without an involved
quantitative analysis. The pulse length, t10–90

r , is between 160
and 500 ns [5,14], where t10–90

r is defined as the time in which
the pulse increases from 10 % to 90 % of its amplitude. This
part of the pulse contains the relevant information regarding
the event topology.

Training and evaluation libraries with independent pulses
were created. The simulated libraries are listed in Table 1.

Table 1 MSE and SSE libraries used to evaluate the recognition effi-
ciencies of ANNs. The energy range of the events contained in the
libraries are given in the second column. The third column describes
the selection criteria for the individual libraries, while information on
the location of the simulated source, influencing the event location dis-
tribution, is listed in the fourth column. For details on the notation, see
the text

Library Energy Processes Source
location

SSE – Single Site Event Libraries

DEP top (1593 ± 5) keV No Comp & Brems Top

DEP side (1593 ± 5) keV No Comp & Brems Side

DEP real (1593 ± 5) keV All processes Side

DEP clean (1593 ± 5) keV No Comp & Brems Homog.

0νββ real (2039 ± 5) keV All processes Homog.

0νββ clean (2039 ± 5) keV No Comp & Brems Homog.

2νββ real 450 keV–540 keV All processes Homog.

2νββ clean 1000 keV–1450 keV No Comp & Brems Homog.

MSE – Multi Site Event Libraries

FEP top (1620 ± 5) keV Comp & Brems only Top

FEP all (1620 ± 5) keV All processes Top

FEP side (1620 ± 5) keV Comp & Brems only Side

FEP clean (1620 ± 5) keV R90 >2 mm, Comp
& Brems only

Top

The DEP, 2νββ and 0νββ event-libraries were cre-
ated with and without a realistic admixture of MSEs due
to Bremsstrahlung and Compton-scattered γ -particles. All
MSE libraries were simulated for the 1620 keV FEP, cor-
responding to a 228Th source, typically used for calibra-
tion. The notation of No Comp & Brems is used for SSE
libraries in which all events with Compton scattering or hard
Bremsstrahlung were removed. MSE libraries that contain
only events which have at least one energy deposition due to
Compton scattering or hard Bremsstrahlung in the detector
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Fig. 2 Barycenter distributions
of energy deposits in a DEP
side, b 2νββ clean, c DEP clean
and d DEP top libraries. The
distributions, which are
projections on the xy-plane, are
plotted against the distance from
the core squared, r2, in order to
“normalize” the distributions
per unit area. Top, middle and
bottom refer to events contained
in the upper, middle and lower
third of the detector, respectively
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and thus have at least two distinct energy deposits are marked
asComp&Brems only. In order to obtain a clean MSE library
it was required that R90, the radius within which 90 % of the
deposited energy was contained [5], is larger than 2 mm. This
ensures that all events have at least two energy deposits that
are at least 2 mm apart.

To indicate the origin of incoming photons, the last col-
umn in Table 1 lists either “Top”, “Side” or “Homog”. This
means that the photons were simulated to come from either
the xy- or xz-plane for “Top” and “Side”, respectively. Their
origins are homogeneously distributed on these planes with
their momentum perpendicular to the plane of origin. The
planes are located 17.5 cm from the center of the detec-
tor and their area is sufficiently large to cover the detector.
SSE libraries with homogeneous event location distributions
within the detector volume are listed as “Homog”. For DEP
clean, 2.6 MeV photons were forced to make pair creation
with the event vertices homogeneously distributed within
the detector. Each training and evaluation library contains
between 7.000 and 20.000 simulated pulses.

The radial distributions of the energy barycenters, defined
as the energy-weighted mean radial position of the energy
deposit, of individual events for SSE libraries containing no
MSEs are shown in Fig. 2. Top, middle and bottom refer
to events contained in the upper, middle and lower third of
the detector, respectively. These three volumes are equal.
The barycenter of an individual event corresponds approxi-
mately to the position of the interaction/decay. For the DEP
clean library, where clean is used here and below to iden-
tify libraries with no Compton or Bremsstrahlung interac-
tions, it is flat as a function of r and equivalent to the dis-
tribution of the 2νββ real library. Real is used to indicate
libraries which contain all processes, i.e. including Compton
scattering and Bremsstrahlung. The DEP side and DEP top
libraries have inhomogeneous event-location distributions,
events being located with a higher probability at high r close
to the bottom and top of the detector since for these parts of
the detector it is more likely for the two back to back 511 keV
photons to escape the detector. Side and top indicate the loca-
tion of the source with respect to the detector.
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5 ANN training and efficiencies

The libraries listed in Table 1 were used to create five different
ANN training and evaluation sets each. They are listed in
Table 2, showing the combinations of SSE and MSE libraries.

The ANNs used in this analysis were built using the
TMultiLayerPerceptron (TMLP) within the ROOT frame-
work [15]. Only the part of the pulse containing the rele-
vant information on the event topology is used by the ANNs.
The pulses in the considered detector are maximally around
500 ns long. In total, 40 time steps, corresponding to 530 ns,
were used. The center of the resulting trace was chosen to be
the point where the pulse reaches 50 % of its amplitude. The
amplitude of each pulse was normalized to unity.

The ANNs are composed of 40 input neurons, one hidden
layer with the same number of neurons and an output layer
with only one neuron. The ANNs were trained using the
Broyden–Fletcher–Goldfarb–Shanno learning method [16–
20]. Background-like MSEs were assigned an ANN output,
NN , of 0 and signal-like SSEs were assigned an NN of 1.
Libraries of the same size for MSEs and SSEs were used.
For a trained network, NN should be close to 1 for SSEs and
close to 0 for MSEs.

For each individual ANN events are classified as SSE if
NN > NN , where NN is a parameter that has to be opti-
mized. The rejection probability R(NN ) represents the frac-
tion of events from an MSE dominated library, FEP in this
case, rejected by the cut NN ≤ NN . The survival probability
E(NN ) represents the fraction of events from a SSE dom-
inated library (DEP, 2νββ or 0νββ) kept with NN > NN .
The cut value NNmax is chosen for each individual ANN to
maximize the quantity ε =

√
R(NN ) · E(NN ) of the cor-

responding evaluation set used. This ensures that the highest
E and R are obtained at the same time.

The solid histogram in Fig. 3 shows the simulated energy
spectrum for events contained in the DEP real and FEP all
libraries (Table 1). The FEP is significantly reduced while
the DEP remains almost untouched.

The survival probability E(NN ) for 0νββ and DEP events
is given by the ratio of the peak areas after and before the

Table 2 Sets of libraries used for ANN training and efficiency evalua-
tions. Hom and inhom are used to indicate sets where a SSE library with
homogeneous and inhomogeneous event location distribution inside the
detector was used. Note that individual libraries with independent pulses
were used for training and evaluation of the ANNs

SSE library MSE library

set I - inhom DEP DEP side FEP side

set II - real 2νββ 2νββ real FEP top

set III - hom DEP DEP clean FEP top

set IV - top DEP DEP top FEP top

set V - clean 0νββ 0νββ clean FEP top
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Fig. 3 Simulated spectra of events contained in the libraries DEP real
and FEP all (see Table 1) in the energy region around the 1593 keV
DEP and the 1620 keV FEP before (solid line) and after (dashed line)
MSE rejection using the ANN trained with set I

ANN rejection. The areas are determined by fitting a Gaus-
sian plus constant background to the spectra.

In Fig. 4a, b, the NN distribution for an ANN trained with
MSEs and SSEs from training sets I and II are shown. A clear
separation between the NN distributions of the MSE and
SSE libraries is visible. Figure 4c, d show E(NN ), R(NN )

and ε(NN ) for training sets I and II, respectively. The ver-
tical line represents NNmax. The E(NNmax), R(NNmax),
ε(NNmax) and η(NNmax) values are called E , R, ε and η,
respectively, in the following. These variables are summa-
rized in Table 3. For libraries with purely SSE or MSE events,
for which SSSE = 1 and BMSE = 1, E and R coincide with
η and ρ, respectively (see Eq. 1).

Note that the ANNs with the optimized NNmax as
described here are later used for efficiency and uncertainty
evaluations.

Statistical uncertainties quoted in the following are derived
from the statistical fluctuations expected due to the limited
number of simulated events and events surviving the selec-
tion.

6 Influence of initial conditions, ANN topology
and training libraries on recognition efficiencies

6.1 Initial conditions and topologies

The reproducibility of η was investigated by training five
ANNs with the same ANN topology. The same training
samples were used but the initial weights of the individual
synapses of the untrained ANN were different in each case.
Also the order in which individual pulses from the training
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Fig. 4 NN output distributions for SSEs and MSEs in a training set I and b training set II. Distributions of E(NN ), R(NN ) and ε(NN ) derived
from c training set I and d training set II. The vertical lines represent the cut NNmax to obtain εmax

Table 3 Summary of the variables used to evaluate the performance of
the ANNs

Survival probability E = E(NNmax)

Rejection probability R = R(NNmax)

Signal recognition efficiency η = η(NNmax)

Background recognition efficiency ρ = ρ(NNmax)

Background reduction power ε = ε(NNmax)

sets were chosen for the iterative training was different for
each ANN. The fluctuations of η between the different ANNs
are of the order of 1 % of the value of η, the RMS of the dis-
tribution of η is taken as its systematic uncertainty. This sys-
tematic uncertainty only describes within which precision
efficiencies are reproducible. They are not to be confused
with systematic uncertainties related to pulse shape simula-
tion.

Two groups of five ANNs, each with a different number of
neurons in the hidden layer, were trained using the same train-
ing set (set II). The value of η for the default ANN with 40
hidden neurons was 0.976+0.001

−0.002 (stat.) ±0.005 (syst.), while
an ANN with 40 input neurons and one hidden layer with
10 neurons had a recognition efficiency η = 0.962+0.001

−0.002
(stat.) ±0.010 (syst.). This is not significantly worse. Five
ANNs with three hidden layers with 40 neurons each were
trained and have η = 0.979+0.001

−0.001 (stat.) ±0.008 (syst.). This
is not a significant improvement with respect to the default

ANN. The corresponding ε values are (0.917 ± 0.013),
(0.905 ± 0.037) and (0.933 ± 0.020) for the default net-
work, the network with one hidden layer of 10 neurons and
the network with three hidden layers, respectively. In sum-
mary, the variation of η due to the choice of the topology of
the network is +0.003

−0.014. In the following, the default network
with one hidden layer with 40 neurons is used and the vari-
ation due to the topology is not considered in the following
uncertainties.

6.2 Recognition efficiencies as a function of training
sample

ANNs were trained with the training sets listed in Table 2.
The trained ANNs were applied to the libraries 0νββ clean
and FEP clean, containing purely SSEs and MSEs. In this
case, SSSE = 1 and BMSE = 1, respectively. Hence,
Emax(SSSE = 1) = η and Rmax(BMSE = 1) = ρ for a clean
library (see Eq. 1). The resulting η, ρ and ε values are given
in Table 4.

The highest values for ε were obtained with ANNs trained
with SSE samples with homogeneous event-location dis-
tributions. The ε values for ANNs trained with inhomoge-
neous samples are by approximately 0.02 lower. The varia-
tion on η is up to 0.06 and hence more pronounced than on
ρ (≈0.03). The variations due to SSE libraries with different
event-location distributions used for the ANN training are
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Table 4 Signal recognition efficiency η, background recognition effi-
ciency ρ, and ε for ANNs trained with library sets having different SSE
samples. Only the systematic uncertainties are quoted. The statistical
uncertainties are for all numbers less than ±0.003

Training set η (0νββ clean) ρ (FEP clean) ε

set I - inhom DEP 0.915 ± 0.017 0.893 ± 0.014 0.904

set II - real 2νββ 0.976 ± 0.005 0.862 ± 0.008 0.917

set III - hom DEP 0.964 ± 0.009 0.887 ± 0.006 0.924

set IV - top DEP 0.921 ± 0.012 0.888 ± 0.006 0.904

set V - clean 0νββ 0.958 ± 0.008 0.888 ± 0.008 0.922

significantly bigger than the fluctuations due to changes of
the ANN initial conditions.

7 0νββ detection efficiencies

7.1 Survival probabilities for realistic 0νββ and DEP
samples

The survival probabilities E obtained with the trained and
NNmax optimized ANNs were evaluated on the SSE libraries
2νββ real, 0νββ real and DEP real according to the method
explained in Sect. 5. The results are listed in Table 5 for
training sets I , II and V .

For 0νββ events in the energy interval (2039 ± 5) keV,
Emax values of (0.937 ± 0.006) and (0.867 ± 0.018) were
obtained with the ANN trained with set II and set I, respec-
tively, where the statistical and systematic uncertainties were
added in quadrature. For the ANN trained on set I, E is lower
than for sets II and V, as expected from the lower η for this
training set (see Table 4). The realistic signal-like libraries
also contain a significant amount of MSEs. This explains
why the obtained E values for 0νββ are significantly differ-
ent from the η listed in Table 4. As the amount of wrong
type of events in event libraries depends on geometry and
energy this also implies that E by itself is not a precise quan-
tity to compare PSD methods even if R is also considered.

7.2 Inhomogeneity of signal recognition efficiency

The position distribution of the rejected events inside the
detector, i.e. the position dependence of the signal recogni-
tion efficiency was studied. In Fig. 5, the location dependence
of the mean value of the NN output inside the detector is
depicted for the SSEs from the 0νββ clean library.

Regions where the average NN output is lower than
NNmax = 0.55 are seen as blue areas. In these regions,
SSEs are systematically rejected. The fraction of the volume
where the SSEs of the 0νββ clean library are more likely to
be rejected than to be accepted as SSE is (8.0 ± 1.7) % for
an ANN trained with the SSE sample with inhomogeneous
event-location distribution set I. For the ANNs trained with
sets II and V, the affected volume is reduced to (2.2 ± 0.5) %
and (3.7 ± 0.8) %, respectively [14]. Using an ANN training
set with similar event-location distribution as for the evalu-
ation set decreases the effect of the systematic volume cut,
however, it does not completely remove it.

The symmetry in the patterns observed in Fig. 5 seems to
be connected to the crystallographic symmetry of the detec-
tor. The axis dependence of the effect might be due to the
dependence of the electron to hole mobility ratio on the posi-
tion of the charge carriers with respect to the crystal axes (see
Fig. 2 in [2]). Affected zones appear close to the inner detec-
tor surface and in the middle of the bulk around r ≈ 18 mm.
The mechanism of pattern formation is, however, not under-
stood.

7.3 Consequences for 0νββ analyses

The different event-location distributions for DEP samples
from calibration and 0νββ signal events (see Fig. 2) was iden-
tified as the major source of systematic uncertainty for the
approach of ANNs trained with DEP sets. For 2νββ training
samples, the different energy distribution leads to a differ-
ent signal-to-noise ratio. The η values obtained for different
SSE evaluation libraries with ANNs trained with different
training sets are listed in Table 6.

Table 5 The survival
probability E for the
DEP real, 2νββ real and 0νββ

real libraries from ANNs trained
with sets I, II and V. The
differences of E evaluated with
the DEP real and 2νββ real
samples to E evaluated using
the 0νββ real sample are also
listed. Statistical and systematic
uncertainties are quoted
separately

Evaluation library Training set

set I set II set V
inhom DEP real 2νββ clean 0νββ

0νββ real 0.867+0.002
−0.003 ± 0.018 0.937+0.003

−0.004 ± 0.005 0.916+0.003
−0.004 ± 0.009

2νββ real (1000 keV <

E < 1450 keV)

0.885+0.005
−0.007 ± 0.017 0.944+0.004

−0.005 ± 0.005 0.915+0.004
−0.006 ± 0.008

DEP real 0.898+0.011
−0.016 ± 0.012 0.936+0.003

−0.001 ± 0.003 0.914+0.011
−0.016 ± 0.007


E(2νββ − 0νββ) (2.1+0.6
−0.9 ± 0.6) % (0.8+0.5

−0.7 ± 0.1) % (0.3+0.5
−0.8 ± 0.4) %


E(DEP − 0νββ) (3.5+1.3
−1.9 ± 1.1) % (−0.1+1.0

−1.6 ± 0.7) % (−0.2+1.2
−1.8 ± 0.6) %
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Fig. 5 Average NN output value (color palette) for events from the 0νββ clean library at different positions within the detector for ANNs trained
with training a set I and b set V. The orientation of the crystal axes are shown on the figure

Table 6 Values of η for
different libraries for ANNs
trained with different sets (see
Table 2). The difference in
efficiency between evaluation
sets is also listed

Evaluation library Training set

set I set II set V
inhom DEP real 2νββ clean 0νββ

0νββ clean 0.915+0.003
−0.004 ± 0.017 0.976+0.001

−0.001 ± 0.005 0.958+0.001
−0.002 ± 0.008

2νββ clean 0.911+0.005
−0.007 ± 0.018 0.970+0.003

−0.004 ± 0.007 0.956+0.004
−0.006 ± 0.008

DEP clean 0.917+0.004
−0.006 ± 0.018 0.976+0.002

−0.002 ± 0.005 0.960+0.002
−0.003 ± 0.009

DEP side 0.954+0.004
−0.007 ± 0.011 0.987+0.003

−0.004 ± 0.004 0.971+0.004
−0.006 ± 0.006


η(2νββ − 0νββ) (−0.4+0.6
−0.9 ± 0.1) % (−0.6+0.3

−0.4 ± 0.3) % (−0.2+0.4
−0.7 ± 0.2) %


η(DEP clean − 0νββ) (0.1+0.5
−0.8 ± 0.2) % (0.0 ± 0.2 ± 0.03) % (0.2+0.2

−0.4 ± 0.1) %


η(DEP side − 0νββ) (4.2+0.6
−0.9 ± 0.8) % (1.1+0.3

−0.4 ± 0.7) % (1.4+0.4
−0.7 ± 0.4) %

The signal recognition efficienciesη of the different ANNs
are within uncertainties the same for the different eval-
uation libraries with homogenous event-location distribu-
tion. This demonstrates that the normalization of the input
to the ANN makes the influence of the lower energy of
events, down to 1 MeV, insignificant. However, when η is
derived using the DEP side set with realistic event-location
distribution it is systematically overestimated. There is a

η[set I ](DEP side − 0νββ) = (4.2+0.6

−0.9 ± 0.8) % effect
for the ANN trained with an independent DEP side SSE
training set. For ANNs trained with homogeneous sam-
ples the effect is reduced but nevertheless significant with

η[set I I ](DEP side − 0νββ) = (1.1+0.3

−0.4 ± 0.7) % and


η[set V ](DEP side − 0νββ) = (1.4+0.4
−0.7 ± 0.9) %. Note

that the efficiencies obtained when training the network with
the 2νββ set are higher than the ones obtained using the 0νββ

set, the reason for which is unclear.
Comparing the resulting η with E quoted in Table 5 shows

that the additional admixture of MSEs to the evaluation
libraries slightly reduces E with respect to η.

8 Summary and conclusions

Systematic effects on the determination of the signal recog-
nition efficiency of pulse-shape-analysis using ANNs were
investigated using pulse shape simulation. The most impor-
tant effect was found to be due to the event-location dis-
tribution of the evaluation libraries. In contrast, the energy
distribution of events in the training library was found to be
irrelevant within reasonable limits.

It was found that training with SSE libraries with homoge-
neous event location distributions lead to higher signal recog-
nition efficiencies.

The use of evaluation libraries with homogeneous event
location distribution lead to reduced systematic uncertainties
on the signal recognition efficiencies of the order of 1 %. On
the contrary signal recognition efficiencies of ANNs deter-
mined from DEP libraries with inhomogeneous event loca-
tion distributions were found to be up to 5 % too high, consis-
tent with the systematic uncertainties derived in [6]. Differ-
ences in the energy distribution of the events of the evaluation
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samples do not have a significant effect. The different event-
location distributions resulting from different positions of the
calibration sources may result in variations of the ANN sig-
nal recognition efficiency by up to 6 % and the background
discrimination power by 2 %.

The signal detection efficiency of an ANN depends on the
location of the events inside a true-coaxial detector. The effi-
ciency is above 90 % in most parts of the detector. However,
SSEs in the inner regions and in the center of the bulk are sys-
tematically misidentified. About 2 % to 8 % of the volume is
affected, depending on the homogeneity of the event-location
distribution of the training set used. Using training sets with
homogeneous SSE location distribution reduces the affected
regions but does not eliminate them completely.

The true-coaxial detectors assumed for these studies have
particularly simple field configurations. The effects on detec-
tors with more complex field configurations will have to be
studied very carefully.

Pulse-shape discrimination with artificial neural networks
is a useful tool to identify multi-site events. It potentially
increases the sensitivity of 0νββ experiments like GERDA
[8,21]. The usage of 2νββ events for training and efficiency
evaluation of the artificial neural networks is recommended.
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