130 research outputs found

    Simulations of the transport and deposition of <sup>137</sup>Cs over Europe after the Chernobyl Nuclear Power Plant accident: influence of varying emission-altitude and model horizontal and vertical resolution

    Get PDF
    The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5° × 1.27°, and the same grid stretched over Europe to reach a resolution of 0.66° × 0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for the 39 layers run due to the increase of the levels in conjunction with the uncertainty of the source term. Moreover, the ecological half-life of 137Cs in the atmosphere after the accident ranged between 6 and 9 days, which is in good accordance to what previously reported and in the same range with the recent accident in Japan. The high response of LMDZORINCA model for 137Cs reinforces the importance of atmospheric modelling in emergency cases to gather information for protecting the population from the adverse effects of radiation

    Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling

    Get PDF
    Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high-frequency data sampled at high-variability stations. Others implications are discussed at the end of the paper

    Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds

    Get PDF
    We propose that cloud condensation nuclei (CCN) concentrations are important for modulating ice formation of Arctic mixed-phase clouds, through modification of the droplet size distribution. Aircraft observations from the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in northern Alaska in April 2008 allow for identification and characterization of both aerosol and trace gas pollutants, which are then compared with cloud microphysical properties. Consistent with previous studies, we find that the concentration of precipitating ice particles (&gt;400 μm) is correlated with the concentration of large droplets (&gt;30 μm). We are further able to link the observed microphysical conditions to aerosol pollution, originating mainly from long range transport of biomass burning emissions. The case studies demonstrate that polluted mixed-phase clouds have narrower droplet size distributions and contain 1–2 orders of magnitude fewer precipitating ice particles than clean clouds at the same temperature. This suggests an aerosol indirect effect leading to greater cloud lifetime, greater cloud emissivity, and reduced precipitation. This result is opposite to the glaciation indirect effect, whereby polluted clouds are expected to precipitate more readily due to an increase in the concentration of particles acting as ice nuclei

    The specific surface area and chemical composition of diamond dust near Barrow, Alaska

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95687/1/jgrd17349.pd

    Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project

    Get PDF
    We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background) aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion. &lt;br&gt;&lt;/br&gt; Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB) and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day&lt;sup&gt;&amp;minus;1&lt;/sup&gt; between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO) in the BB plumes, which had been transported over distances &gt;5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB particles between the time they were emitted and the time they were observed in dense layers above the sea-ice inversion layer

    Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial

    Get PDF
    Background: Elevated proinflammatory cytokines are associated with greater COVID-19 severity. We aimed to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19. Methods: We did a 60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial at 45 hospitals in Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain. We included adults (≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and pneumonia, who required oxygen supplementation or intensive care. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo. Patients, care providers, outcome assessors, and investigators remained masked to assigned intervention throughout the course of the study. The primary endpoint was time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population. The key secondary endpoint was proportion of patients alive at day 29. Safety outcomes included adverse events and laboratory assessments. This study is registered with ClinicalTrials.gov, NCT04327388; EudraCT, 2020-001162-12; and WHO, U1111-1249-6021. Findings: Between March 28 and July 3, 2020, of 431 patients who were screened, 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12·0 days [95% CI 9·0 to 15·0]) and sarilumab 200 mg (10·0 days [9·0 to 12·0]; hazard ratio [HR] 1·03 [95% CI 0·75 to 1·40]; log-rank p=0·96) or sarilumab 400 mg (10·0 days [9·0 to 13·0]; HR 1·14 [95% CI 0·84 to 1·54]; log-rank p=0·34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference −1·7 [−9·3 to 5·8]; p=0·63 vs placebo; and 159 [92%] of 173 patients in the sarilumab 400 mg group; difference 0·2 [−6·9 to 7·4]; p=0·85 vs placebo). At day 29, there were numerical, non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%; difference +8·9% [95% CI −7·7 to 25·5]; p=0·25) for patients who had critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group. Interpretation: This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen. Adequately powered trials of targeted immunomodulatory therapies assessing survival as a primary endpoint are suggested in patients with critical COVID-19. Funding: Sanofi and Regeneron Pharmaceuticals
    • …
    corecore