4,035 research outputs found
On the statistical significance of the conductance quantization
Recent experiments on atomic-scale metallic contacts have shown that the
quantization of the conductance appears clearly only after the average of the
experimental results. Motivated by these results we have analyzed a simplified
model system in which a narrow neck is randomly coupled to wide ideal leads,
both in absence and presence of time reversal invariance. Based on Random
Matrix Theory we study analytically the probability distribution for the
conductance of such system. As the width of the leads increases the
distribution for the conductance becomes sharply peaked close to an integer
multiple of the quantum of conductance. Our results suggest a possible
statistical origin of conductance quantization in atomic-scale metallic
contacts.Comment: 4 pages, Tex and 3 figures. To be published in PR
A classification of the effective metric in nonlinear electrodynamics
We show that only two types of effective metrics are possible in certain
nonlinear electromagnetic theories. This is achieved by using the dependence of
the effective metric on the energy-momentum tensor of the background along with
the Segr\`e classification of the latter. Each of these forms is completely
determined by single scalar function, which characterizes the light cone of the
nonlinear theory. We compare this light cone with that of Minkowski in two
examples.Comment: Accepted for publication in Classical & Quantum Gravit
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
Fast Photon Detection for Particle Identification with COMPASS RICH-1
Particle identification at high rates is an important challenge for many
current and future high-energy physics experiments. The upgrade of the COMPASS
RICH-1 detector requires a new technique for Cherenkov photon detection at
count rates of several per channel in the central detector region, and a
read-out system allowing for trigger rates of up to 100 kHz. To cope with these
requirements, the photon detectors in the central region have been replaced
with the detection system described in this paper. In the peripheral regions,
the existing multi-wire proportional chambers with CsI photocathode are now
read out via a new system employing APV pre-amplifiers and flash ADC chips. The
new detection system consists of multi-anode photomultiplier tubes (MAPMT) and
fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip.
The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run.
We present the photon detection design, constructive aspects and the first
Cherenkov light in the detector.Comment: Proceedings of the Imaging 2006 conference, Stockholm, Sweden, 27-30
June 2006, 5 pages, 6 figures, to appear in NIM A; corrected typo in caption
of Fig.
Fast photon detection for the COMPASS RICH detector
The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring
Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a
wide momentum range. For the data taking in 2006, the COMPASS RICH has been
upgraded in the central photon detection area (25% of the surface) with a new
technology to detect Cherenkov photons at very high count rates of several 10^6
per second and channel and a new dead-time free read-out system, which allows
trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of
576 visible and ultra-violet sensitive multi-anode photomultipliers with 16
channels each. The upgraded detector showed an excellent performance during the
2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
Measurement of the Decay Amplitudes of B0 --> J/psi K* and B0s --> J/psi phi Decays
A full angular analysis has been performed for the pseudo-scalar to
vector-vector decays, B0 --> J/psi K* and B_s --> J/psi phi, to determine the
amplitudes for decays with parity-even longitudinal and transverse polarization
and parity-odd transverse polarization. The measurements are based on 190 B0
candidates and 40 B_s candidates collected from a data set corresponding to 89
inverse pb of pbarp collisions at root(s) = 1.8 TeV at the Fermilab Tevatron.
In both decays the decay amplitude for longitudinal polarization dominates and
the parity-odd amplitude is found to be small.Comment: 7 pages, 3 figures, 1 tabl
Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV
A search for new physics is presented based on an event signature of at least
three jets accompanied by large missing transverse momentum, using a data
sample corresponding to an integrated luminosity of 36 inverse picobarns
collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector
at the LHC. No excess of events is observed above the expected standard model
backgrounds, which are all estimated from the data. Exclusion limits are
presented for the constrained minimal supersymmetric extension of the standard
model. Cross section limits are also presented using simplified models with new
particles decaying to an undetected particle and one or two jets
Standalone vertex ďŹnding in the ATLAS muon spectrometer
A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at âs = 7 TeV collected with the ATLAS detector at the LHC during 2011
- âŚ