651 research outputs found
One-dimensional Dirac oscillator in a thermal bath
We analyze the one-dimensional Dirac oscillator in a thermal bath. We found
that the heat capacity is two times greater than the heat capacity of the
one-dimensional harmonic oscillator for higher temperatures.Comment: 4 pages, 3 figures, to appear in Physics Letters
Do bilinguals have different concepts? The case of shape and material in Japanese L2 users of English
An experiment investigated whether Japanese speakers’ categorisation of objects and substances as shape or material is influenced by acquiring English, based on Imai and Gentner (1997). Subjects were presented with an item such as a cork pyramid and asked to choose between two other items that matched it for shape (plastic pyramid) or for material (piece of cork). The hypotheses were that for simple objects the number of shape-based categorisations would increase according to experience of English and that the preference for shape and material-based categorisations of Japanese speakers of English would differ from mono¬lingual speakers of both languages. Subjects were 18 adult Japanese users of English who had lived in English-speaking countries between 6 months and 3 years (short-stay group), and 18 who had lived in English-speaking countries for 3 years or more (long-stay group). Both groups achieved above criterion on an English vocabulary test. Results were: both groups preferred material responses for simple objects and substances but not for complex objects, in line with Japanese mono¬linguals, but the long-stay group showed more shape preference than the short-stay group and also were less different from Americans. These effects of acquiring a second language on categorisation have implications for conceptual representation and methodology
A framework for the local information dynamics of distributed computation in complex systems
The nature of distributed computation has often been described in terms of
the component operations of universal computation: information storage,
transfer and modification. We review the first complete framework that
quantifies each of these individual information dynamics on a local scale
within a system, and describes the manner in which they interact to create
non-trivial computation where "the whole is greater than the sum of the parts".
We describe the application of the framework to cellular automata, a simple yet
powerful model of distributed computation. This is an important application,
because the framework is the first to provide quantitative evidence for several
important conjectures about distributed computation in cellular automata: that
blinkers embody information storage, particles are information transfer agents,
and particle collisions are information modification events. The framework is
also shown to contrast the computations conducted by several well-known
cellular automata, highlighting the importance of information coherence in
complex computation. The results reviewed here provide important quantitative
insights into the fundamental nature of distributed computation and the
dynamics of complex systems, as well as impetus for the framework to be applied
to the analysis and design of other systems.Comment: 44 pages, 8 figure
Complexity Bounds for Ordinal-Based Termination
`What more than its truth do we know if we have a proof of a theorem in a
given formal system?' We examine Kreisel's question in the particular context
of program termination proofs, with an eye to deriving complexity bounds on
program running times.
Our main tool for this are length function theorems, which provide complexity
bounds on the use of well quasi orders. We illustrate how to prove such
theorems in the simple yet until now untreated case of ordinals. We show how to
apply this new theorem to derive complexity bounds on programs when they are
proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability
Problems (RP 2014, 22-24 September 2014, Oxford
The Time-Energy Uncertainty Relation
The time energy uncertainty relation has been a controversial issue since the
advent of quantum theory, with respect to appropriate formalisation, validity
and possible meanings. A comprehensive account of the development of this
subject up to the 1980s is provided by a combination of the reviews of Jammer
(1974), Bauer and Mello (1978), and Busch (1990). More recent reviews are
concerned with different specific aspects of the subject. The purpose of this
chapter is to show that different types of time energy uncertainty relation can
indeed be deduced in specific contexts, but that there is no unique universal
relation that could stand on equal footing with the position-momentum
uncertainty relation. To this end, we will survey the various formulations of a
time energy uncertainty relation, with a brief assessment of their validity,
and along the way we will indicate some new developments that emerged since the
1990s.Comment: 33 pages, Latex. This expanded version (prepared for the 2nd edition
of "Time in quantum mechanics") contains minor corrections, new examples and
pointers to some additional relevant literatur
Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the International BEACON Consortium
BackgroundPrevious studies that showed an association between smoking and adenocarcinomas of the esophagus and esophagogastric junction were limited in their ability to assess differences by tumor site, sex, dose–response, and duration of cigarette smoking cessation.MethodsWe used primary data from 10 population-based case–control studies and two cohort studies from the Barrett’s Esophagus and Esophageal Adenocarcinoma Consortium. Analyses were restricted to white non-Hispanic men and women. Patients were classified as having esophageal adenocarcinoma (n = 1540), esophagogastric junctional adenocarcinoma (n = 1450), or a combination of both (all adenocarcinoma; n = 2990). Control subjects (n = 9453) were population based. Associations between pack-years of cigarette smoking and risks of adenocarcinomas were assessed, as well as their potential modification by sex and duration of smoking cessation. Study-specific odds ratios (ORs) estimated using multivariable logistic regression models, adjusted for age, sex, body mass index, education, and gastroesophageal reflux, were pooled using a meta-analytic methodology to generate summary odds ratios. All statistical tests were two-sided.ResultsThe summary odds ratios demonstrated strong associations between cigarette smoking and esophageal adenocarcinoma (OR = 1.96, 95% confidence interval [CI] = 1.64 to 2.34), esophagogastric junctional adenocarcinoma (OR = 2.18, 95% CI = 1.84 to 2.58), and all adenocarcinoma (OR = 2.08, 95% CI = 1.83 to 2.37). In addition, there was a strong dose–response association between pack-years of cigarette smoking and each outcome ( P < .001). Compared with current smokers, longer smoking cessation was associated with a decreased risk of all adenocarcinoma after adjusting for pack-years (<10 years of smoking cessation: OR = 0.82, 95% CI = 0.60 to 1.13; and ≥10 years of smoking cessation: OR = 0.71, 95% CI = 0.56 to 0.89). Sex-specific summary odds ratios were similar.ConclusionsCigarette smoking is associated with increased risks of adenocarcinomas of the esophagus and esophagogastric junction in white men and women; compared with current smoking, smoking cessation was associated with reduced risks.<br/
Atomic diffraction from nanostructured optical potentials
We develop a versatile theoretical approach to the study of cold-atom
diffractive scattering from light-field gratings by combining calculations of
the optical near-field, generated by evanescent waves close to the surface of
periodic nanostructured arrays, together with advanced atom wavepacket
propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
