1,940 research outputs found

    A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints

    Get PDF
    This article presents an exact algorithm for the multi-depot vehicle routing problem (MDVRP) under capacity and route length constraints. The MDVRP is formulated using a vehicle-flow and a set-partitioning formulation, both of which are exploited at different stages of the algorithm. The lower bound computed with the vehicle-flow formulation is used to eliminate non-promising edges, thus reducing the complexity of the pricing subproblem used to solve the set-partitioning formulation. Several classes of valid inequalities are added to strengthen both formulations, including a new family of valid inequalities used to forbid cycles of an arbitrary length. To validate our approach, we also consider the capacitated vehicle routing problem (CVRP) as a particular case of the MDVRP, and conduct extensive computational experiments on several instances from the literature to show its effectiveness. The computational results show that the proposed algorithm is competitive against stateof-the-art methods for these two classes of vehicle routing problems, and is able to solve to optimality some previously open instances. Moreover, for the instances that cannot be solved by the proposed algorithm, the final lower bounds prove stronger than those obtained by earlier methods

    Models and algorithms for the capacitated location-routing problem

    Get PDF
    Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48].The capacitated location-routing problem (CLRP) arises as a key problem in the design of distribution networks. It generalizes both the capacitated facility location problem (CFLP) and the multiple depot vehicle routing problem (MDVRP), the first by considering additional routing decisions and the second by adding the location decision variables. In this thesis we use different mathematical programming tools to develop and specialize new models and algorithms for solving the CLRP. In Chapter 3, three new models are presented for the CLRP based on vehicle-flow and commodity-flow formulations, all of which are shown to dominate, in terms of the linear relaxation lower bound, the original two-index vehicle-flow formulation [19]. Known valid inequalities are complemented with some new ones and included using separation algorithms that in many cases generalize extisting ones found in the literature. Computational experiments suggest that flow models can be efficient for dealing with small or medium size instances of the CLRP (50 customers or less). In Chapter 4, a new branch-and-cut-and-price exact algorithm is introduced for the CLRP based on a set-partitioning formulation. The pricing problem is a shortest path problem with resource constraints (SPPRC). In particular, we consider a relaxation of such problem in which routes are allowed to contain cycles of length three or more. This is complemented with the development of new valid inequalities that are shown to be effective for closing the optimality gap as well as to restrict the appearance of cycles. Computational experience supports the fact that this method is now the best exact method for the CLRP. In Chapter 5, we introduce a new metaheuristic with the aim of finding good quality solutions in short or moderate computing times. First, a bundle of good solutions is generated with the help of a greedy randomized adaptive search procedure (GRASP). Following this, a blending procedure is applied with the aim of producing a better upper bound as a combination of all the others in the bundle. An iterative destroy-and-repair method is then applied using a location-reallocation model that generalizes the reallocation model due to de Franceschi et al. [48]

    A sampling-based exact algorithm for the solution of the minimax diameter clustering problem

    Get PDF
    We consider the problem of clustering a set of points so as to minimize the maximum intra-cluster dissimilarity, which is strongly NP-hard. Exact algorithms for this problem can handle datasets containing up to a few thousand observations, largely insufficient for the nowadays needs. The most popular heuristic for this problem, the complete-linkage hierarchical algorithm, provides feasible solutions that are usually far from optimal. We introduce a sampling-based exact algorithm aimed at solving large-sized datasets. The algorithm alternates between the solution of an exact procedure on a small sample of points, and a heuristic procedure to prove the optimality of the current solution. Our computational experience shows that our algorithm is capable of solving to optimality problems containing more than 500,000 observations within moderate time limits, this is two orders of magnitude larger than the limits of previous exact methods

    On the integration of Dantzig-Wolfe and Fenchel decompositions via directional normalizations

    Full text link
    The strengthening of linear relaxations and bounds of mixed integer linear programs has been an active research topic for decades. Enumeration-based methods for integer programming like linear programming-based branch-and-bound exploit strong dual bounds to fathom unpromising regions of the feasible space. In this paper, we consider the strengthening of linear programs via a composite of Dantzig-Wolfe and Fenchel decompositions. We provide geometric interpretations of these two classical methods. Motivated by these geometric interpretations, we introduce a novel approach for solving Fenchel sub-problems and introduce a novel decomposition combining Dantzig-Wolfe and Fenchel decompositions in an original manner. We carry out an extensive computational campaign assessing the performance of the novel decomposition on the unsplittable flow problem. Very promising results are obtained when the new approach is compared to classical decomposition methods

    The impact of anastomotic leak on long-term oncological outcomes after low anterior resection for mid-low rectal cancer: extended follow-up of a randomised controlled trial

    Get PDF
    The impact of anastomotic leaks (AL) on oncological outcomes after low anterior resection for mid-low rectal cancer is still debated. The aim of this study was to evaluate overall survival (OS), disease-free survival (DFS), and local and distant recurrence in patients with AL following low anterior resection

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI
    corecore