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RÉSUMÉ

Le problème de localisation-routage avec capacités (PLRC) apparaît comme un pro-

blème clé dans la conception de réseaux de distribution de marchandises. Il généralise

le problème de localisation avec capacités (PLC) ainsi que le problème de tournées de

véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au

routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans

cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation

mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC ba-

sés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci

dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux

indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles,

de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi

été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les

résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre

des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle

méthode de génération de colonnes basée sur une formulation de partition d’ensemble.

Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC).

En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de

produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par

des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité

en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats

suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans

le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Première-

ment, on démarre une méthode randomisée de type GRASP pour trouver un premier

ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors com-

binées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et

réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui

généralise le problème de réaffectaction [48].

Mots clés: localisation-routage, géneration de colonnes, heuristiques.



ABSTRACT

The capacitated location-routing problem (CLRP) arises as a key problem in the de-

sign of distribution networks. It generalizes both the capacitated facility location prob-

lem (CFLP) and the multiple depot vehicle routing problem (MDVRP), the first by con-

sidering additional routing decisions and the second by adding the location decision

variables. In this thesis we use different mathematical programming tools to develop

and specialize new models and algorithms for solving the CLRP. In Chapter 3, three

new models are presented for the CLRP based on vehicle-flow and commodity-flow for-

mulations, all of which are shown to dominate, in terms of the linear relaxation lower

bound, the original two-index vehicle-flow formulation [19]. Known valid inequalities

are complemented with some new ones and included using separation algorithms that in

many cases generalize extisting ones found in the literature. Computational experiments

suggest that flow models can be efficient for dealing with small or medium size instances

of the CLRP (50 customers or less). In Chapter 4, a new branch-and-cut-and-price ex-

act algorithm is introduced for the CLRP based on a set-partitioning formulation. The

pricing problem is a shortest path problem with resource constraints (SPPRC). In par-

ticular, we consider a relaxation of such problem in which routes are allowed to contain

cycles of length three or more. This is complemented with the development of new valid

inequalities that are shown to be effective for closing the optimality gap as well as to

restrict the appearance of cycles. Computational experience supports the fact that this

method is now the best exact method for the CLRP. In Chapter 5, we introduce a new

meta-heuristic with the aim of finding good quality solutions in short or moderate com-

puting times. First, a bundle of good solutions is generated with the help of a greedy

randomized adaptive search procedure (GRASP). Following this, a blending procedure

is applied with the aim of producing a better upper bound as a combination of all the

others in the bundle. An iterative destroy-and-repair method is then applied using a

location-reallocation model that generalizes the reallocation model due to de Franceschi

et al. [48].

Keywords: location-routing, branch-and-cut, branch-and-price, metaheuristic.
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CHAPTER 1

INTRODUCTION

Combinatorial optimization is an important field in the area of computer science

and operations research. Many industrial applications, such as the location of ware-

houses, the routing of vehicles in freight distribution, or the scheduling of employees

in a supermarket, can be modeled as combinatorial optimization problems. Some of

these problems, due to their specific structure, are known to be easily solvable. That is

the case of shortest path problems, minimum spanning tree problems or sorting prob-

lems, for which polynomial-time exact algorithms are known. However, many other

problems fall into the category of N P-hard problems, for which no polynomial-time

algorithms are known. For a comprehensive formalization of these concepts, the reader

is referred to some classic literature in combinatorial optimization and complexity the-

ory [60, 114]. However, it is worth mentioning that for those problems known to be

N P-hard, polynomial-time algorithms are unlikely to exist unless P = N P .

The fact that no polynomial-time algorithm is known for a certain problem does

not mean that no efficient algorithms are known for it. Indeed, some problems, although

N P-hard, present some nice structures that can be exploited and then efficiently solved

either exactly or heuristically. That is the case, for instance, of the 0-1 knapsack prob-

lem which is known to be weakly N P-hard and that can be solved exactly in pseudo-

polynomial time using dynamic programming. Problems that are not weakly N P-hard

are also referred to as strongly N P-hard. A typical case of a strongly N P-hard prob-

lem is the traveling salesman problem, for which efficient algorithms are able to deal

with very large instances.

The main objective of this thesis is to introduce models and efficient algorithms

for the capacitated location-routing problem (CLRP), a rich combinatorial optimization

problem arising in many real-life applications, such as the location of warehouses and

the distribution of commodities from those warehouses to customers. In the CLRP, a

decision maker must decide of the location of facilities and the routing of vehicles in
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order to satisfy the known demand of a set of customers. This problem is a generalization

of two combinatorial optimization problems: the capacitated facility location problem

(CFLP) and the capacitated vehicle routing problem (CVRP), both of which are known

to be strongly N P-hard and for which efficient exact and heuristic agorithms exist.

Because of this, the CLRP also belongs to the class of strongly N P-hard problems.

To achieve this objective, this thesis is divided into three chapters that present the

contributions made to the CLRP. In Chapter 3, we introduce three new formulations of

the CLRP based on vehicle flows and commodity flows, which are proven to dominate,

in terms of the linear relaxation lower bound, the original two-index vehicle-flow for-

mulation of Belenguer et al. [19] at the expense of adding more variables. We derive

two new families of multistar inequalities from the commodity-flow formulations and

introduce separation algorithms for using them inside the vehicle-flow formulations. We

also introduce several new families of valid inequalities for the formulations introduced,

and strengthen several of the existing ones, which are complemented with new, efficient

separation algorithms, which in many cases generalize those introduced by Belenguer

et al. [19]. We perform a computational study comparing each of the formulations on

a large number of instances and discuss the strengths and weaknesses of each formula-

tion. The results obtained show that the compact two-index vehicle-flow formulation is

in general more robust than the others. Indeed, the slightly worse lower bounds achieved

with this formulation are usually compensated by the larger number of branching nodes

that can be explored within a branch-and-cut algorithm, leading to better average opti-

mality gaps. Additionally, our implementation of the branch-and-cut algorithm over the

two-index vehicle-flow formulation scales better than the one introduced by Belenguer

et al. [19], being able to solve instances with up to 100 customers whereas the original

method of Belenguer et al. [19] was only capable of solving instances containing up to

50 customers.

In Chapter 4, we present a branch-and-cut-and-price algorithm for the CLRP. We

adapt the set-partitioning formulation of Akca et al. [4] so that all of the cuts valid for

the previous formulations can be incorporated. We introduce two bounding procedures

that are applied sequentially and that allow, in most cases, to reduce the CLRP to a series
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of MDVRPs. Our computational results show that our bounding procedures can in fact

be stronger than those of Baldacci et al. [16] in some instances. We also introduce several

new families of cuts that are effective for closing the optimality gap. One of the families

introduced allows the use state-space relaxation in the pricing problem so as to get lower

bounds close to those obtained if pricing on elementary routes (routes that do not contain

cycles). This is complemented with new fathoming rules that accelerate the solution of

the pricing subproblems. The results obtained on several sets of instances show that our

method obtains better lower bounds than that of Baldacci et al. [16] and is able to solve

to optimality several open instances, and to improve the best known solutions for some

others.

In Chapter 5, we present a new heuristic algorithm for the CLRP based on the se-

quential application of a GRASP metaheuristic and the solution of several integer-linear

programs (ILP). Our implementation of the GRASP algorithm yields better average re-

sults than the previous approach of Prins et al. [121]. We also introduce a novel location-

reallocation model (LRM) that takes into account the location and the routing decisions

simultaneously. The proposed model is based on a set-partitioning formulation that gen-

eralizes both the CFLP and the reallocation model of de Franceschi et al. [48], the first

by adding the possibility of inserting customers in the middle of the routes, and the

second by adding the possibility of reallocating whole routes to different facilities. We

introduce a new technique based on the solution of the LRM for combining a bundle of

reasonably good solutions with the objective of producing an improved solution. Our

computational experience shows that our algorithm provides better average results than

previous methods in competitive times and is able to improve the best known feasible

solutions on several instances from the literature.



CHAPTER 2

LITERATURE REVIEW

In this chapter we provide an extensive literature review of the research concerning

the different classes of location-routing problems (LRP) and of closely related problems

such as facility location problems (FLP) and vehicle routing problems (VRP), including

some particular cases of these. We first give a brief description of the different classes

of FLP, VRP and LRP that can be found in the literature and describe the different

algorithmic alternatives that have been devised to deal with their variants. We then give

a more detailed review of the CLRP including the different modeling approaches and

existing algorithms.

2.1 An overview of location-routing and related problems

In this section we give a short survey of the location-routing problem and two closely

related problems, the facility location problem and the vehicle routing problem. It in-

cludes a brief description of each of these problems including several particular cases,

as well as the corresponding algorithms found in the literature.

2.1.1 Facility location problems

Facility location problems arise as important problems in many industrial applica-

tions, such as the location of bank accounts among the different branches of a bank and

the positioning of mobile phone antennaes, just to name a few. In their more general

form, given a set of potential facilities I and a set of customers J, they consist to find

a subset of facilities I′ ⊆ I and to assign customers to those facilities so as to optimize

some objective function. The set I might be of finite or infinite size, and also the objective

function may take different forms. Recent surveys of different classes of facility location

problems and algorithmic approaches can be found in Daskin [47], Revelle et al. [127]

and Smith et al. [136]. The seminal works of Hakimi [73, 74] introduce the p-median
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and p-center problems. In the p-median problem, given a set of customer locations J and

a finite set of potential facility locations I, the problem is to select a subset of facilities

I′ of cardinality p and to assign customers to these open facilities so as to minimize the

sum of the distances from the open facilities to their assigned customers. In the p-center

problem, the input is the same as for the p-median, but the objective is now to select

p facilities and assign customers to these facilities so as to minimize the maximum dis-

tance between any facility and its assigned customers. These two problems belong to the

class of N P-hard problems [81, 82]. Many algorithms, most of them heuristics, have

been proposed for these problems. For the p-median problem, the classical references

include the vertex substitution method of Teitz and Bart [139] and the decomposition

method of Garfinkel et al. [61]. A recent survey by Mladenovic et al. [106] recapitu-

lates the extensive literature for this problem. If the number of facilities to locate is not

known in advance, but one instead considers their setup costs, the natural extension of

the p-median problem is the so-called simple plant location problem (SPLP), introduced

by Kuehn and Hamburger [85]. One of the most efficient exact algorithm for the SPLP

is the dual-ascent method introduced by Erlenkotter [54]. The SPLP is closely related

to some classical combinatorial optimizatiom problems like the set-covering problem or

the set-partitioning problem. Polyhedral studies of the SPLP exploit these similarities

in order to derive valid inequalities and prove conditions under which these inequali-

ties induce facets of the SPLP polytope [28, 29, 41]. A natural extension of the SPLP

is the case in which facilities have limited capacities. Such a problem is known as the

capacitated facility location problem (CFLP). Depending on whether customers can be

served by several facilities or just one, we distinguish between the multiple source FLP

(MSFLP) or the single source FLP (SSFLP). For the MSFLP, Lagrangean methods seem

to be a very promising avenue. Depending on which sets of constraints are relaxed one

gets different approaches [see for example 30, 63, 143]. Several studies propose valid in-

equalities for the MSFLP polytope and devise conditions under which these inequalities

induce facets [1, 2, 96]. Some of these inequalities come from related problems as the

SPLP [28], fixed-charge network-design problems [145] and lot-sizing problems [118].

The usefulness of these inequalities is unclear as their separation algorithms in most
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cases are N P-hard. Regarding the SSFLP, decomposition methods have shown to be

the most successful approaches. Neebe and Rao [111] were the first to formulate the

SSFLP as a set-partitioning problem and solved it by branch-and-price. Holmberg et al.

[79] developed a Lagrangean heuristic by relaxing the assignment constraints. Their al-

gorithm, despite being old, remains one of the most efficient exact algorithms for the SS-

FLP. Other Lagrangean heuristics have been developed by Barceló and Casanovas [17]

and Klincewicz and Luss [84]. Díaz and Fernández [52] developed a branch-and-price

method in which the subproblem reduces to solving a series of 0-1 knapsack problems.

Metaheuristics, such as the very large-scale neighborhood search by Ahuja et al. [3],

have also been proposed to deal with large-size instances of the SSFLP.

2.1.2 Vehicle routing problems

Vehicle routing problems arise as important tactical/operational problems in many

industrial applications, such as the distribution of mail, the schedule of school bus routes

and the routing of maintenance units, just to name a few. The simplest VRP can be stated

as follows. Given a set of customers J, the problem is to find the Hamiltonian cycle (a

simple cycle containing all the nodes in J) so as to minimize the total length of that cycle.

This problem is known in the literature as the traveling salesman problem (TSP), and was

first introduced by Dantzig et al. [46]. This problem is also known to be N P-hard [60].

The TSP has a very rich combinatorial structure and it is considered as one of the sim-

plest problems presenting such practical interest and algorithmic challenges. For these

reasons, many algorithms, both exact and heuristics, have been developed to solve the

TSP. Several surveys and books cover some of the most important contributions made to

this problem [5, 20, 72, 93, 126]. In the seminal work of Dantzig et al. [46] the TSP is

formulated as a linear-integer program. The authors introduced the first two-index for-

mulation for this problem and solved it by means of branch-and-cut, a novel idea at that

time. The problem contains an exponential number of subtour elimination constraints

(a subtour is a tour containing strictly less than |J| nodes) that are first relaxed and then

dynamically added to the problem. Their algorithm was able to solve an instance with 49

customers, one for each state of the continental United States. Miller et al. [105] intro-
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duced the so-called MTZ constraints for the TSP, which replace the subtour elimination

constraints of Dantzig et al. [46] by ensuring the elimination of subtours after adding a

polynomial number of variables and constraints. This formulation, however, produces

weaker lower bounds than the original formulation of Dantzig et al. [46]. Nowadays, the

most succesful approaches to solving the TSP are branch-and-cut algorithms [34]. Sev-

eral families of valid inequalities have been introduced [24, 33, 58, 69, 94] to strengthen

the linear relaxation of this problem at the point of allowing the solution of some very

large instances. The VRP arises as a natural extension of the TSP when vehicle capac-

ities need to be explcitely taken into account. In the VRP, in addition to the customer

locations J, an extra node is added to represent a facility. Then, the problem is to route

a given fleet of capacitated vehicles, each of them leaving from and returning to the fa-

cility, in order to visit each customer exactly once and such that vehicle capacities are

respected. The goal is to minimize the total traveling cost. The literature on the VRP is

vast, and it includes several surveys and compendiums [39, 65, 88, 140]. The first to for-

mally introduce this problem were Dantzig and Ramser [45]. Among the heuristic meth-

ods for solving the VRP, we first mention 1-phase or constructive methods [31, 35, 107]

that build a solution by iteratively adding customers to a current partial solution. Clarke

and Wright [35] introduced the concept of a savings algorithm in which, starting from

a feasible solution, routes are merged using a descent criteria. Two-phase (cluster first,

route second) methods [25, 57] separate the problem in two subproblems that are solved

sequentially. Metaheursitics methods [see 62, among others] explore the solution space

by jumping from one solution to another aiming to reach a global optima which other-

wise might not be reachable by the 1-phase or 2-phase heuristics which usually converge

to a local optimum. At each iteration a solution (sometimes unfeasible) is provided, and

a neighborhood exploration is performed looking for a better solution close to it. This

exploration may result in a deterioration of the total cost and this is how local optima

is avoided. Pisinger and Røpke [117] introduced an adaptive large neighborhood search

heuristic (ALNS) able to find very good quality solutions for large instances in a short

time. The main idea of their algorithm is to combine the large neighborhood search

approach of [134], in which a series of destroy and repair methods are performed se-
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quentially in order to explore the neighborhood space, with an adaptive procedure that

identifies the methods that perform the best in the destroy and repair process. Regarding

the exact methods developed for solving the VRP to optimality, it is possible to mention

the polyhedral studies on the two-index formulation of Dantzig and Ramser [45] for the

particular case of symmetric costs and homogeneous fleet. This problem is better known

as the capacitated VRP (CVRP), for which several authors have proposed valid inequal-

ities and separation algorithms [6, 40, 42, 95, 108, 109]. Probably the most succesful

exact method based on cutting planes for the CVRP is the one of Lysgaard et al. [101]

which includes efficient separation algorithms for several classes of valid inequalities.

However, large-size instances can be very hard to solve even for the most sophisticated

branch-and-cut algorithms. Recently, column generation-based methods have been de-

veloped that scale much better than flow formulations at the expense of adding much

more variables. These methods are based on strong set-partitioning formulations of the

CVRP and provide very tight lower bounds. Among these approaches, it is possible

to identify the works of Fukasawa et al. [59] and Baldacci et al. [14]. Another natural

extension of the VRP is the multiple depot VRP (MDVRP), in which instead of con-

sidering just one facility, vehicles are routed from a set of facilities I. For each facility

i ∈ I, one associates a capacity bi representing the maximum amount of commodity that

can be served from that facility. The objective is to route the vehicles from the different

facilities at minimum cost so as to serve each customer exactly once while respecting

both vehicle and facility capacities. This problem is usually much more difficult than

the VRP and most of the literature has focused on the development of efficient heuris-

tic algorithms. Cordeau et al. [38] developed a tabu search heuristic for the MDVRP.

Contrary to descent algorithms, after each iteration the solution may deteriorate. A tabu

list forbids, however, cycling between a good and a bad solution, and it also adds di-

versification to the search. Pisinger and Røpke [117] use an adaptation of their ALNS

method to deal with the MDVRP. Vidal et al. [144] proposed a hybrid genetic algorithm

for multiple classes of vehicle routing problems, including the MDVRP. Their algorithm

is very robust and usually improves or at least finds the best known feasible solutions for

the instances considered in their study. Baldacci and Mingozzi [12] introduced a general
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framework to deal with several different classes of vehicle-routing problems, including

the MDVRP. A set-partitioning formulation of the MDVRP is provided and solved by

means of branch-and-cut-and-price.

2.1.3 Location-routing problems

The location-routing problem arises as a natural extension of both the FLP and the

VRP. Many applications include interactions between location and routing decisions,

such as the location of distribution centers or warehouses for multiple types of commodi-

ties from which goods are distributed to customers, or more recently some applications

arising in city logistics [43]. By neglecting this interaction, it is possible to approxi-

mately solve this problem as a pure location problem. However, it is known that making

such simplification may lead to sub-optimal solutions of very poor quality [131]. In its

simplest form, the LRP can be stated as follows. Given a set of potential facilities I (that

may be of infinite size), a set of customers J and a fleet of vehicles K, the problem is to

select a subset of facilities I′, to route the vehicles of set K from these facilities and to sat-

isfy each customer’s demand so as to minimize a certain objective function. Most of the

literature on location-routing problems deal with the particular case in which I is of finite

size. Only a few papers [130, 133] deal with the problem of locating a single facility in

the contiuous space. Otherwise, the location-routing literature has mainly focused on the

problem of locating an arbitrary number of facilities. Some studies [9, 10, 89, 133, 135]

consider the particular case in which the size of I′ is determined in advance. Laporte

[87] and Nagy and Salhi [110] provide complete surveys of the models and algorithms

for the LRP existing up to the date they were published. The paper of Laporte [87]

introduces a general three-index formulation that includes as special cases those given

by Golden et al. [66], Or and Pierskalla [112], Srikar and Srivastava [138] and Perl and

Daskin [115]. Regarding the more general case in which the set I has finite size and

the size of the set I′ is to be determined, Laporte et al. [91] propose the first two-index

vehicle-flow formulation of the LRP with uncapacitated facilities (ULRP) introducing

chain barring constraints to eliminate solutions where vehicle routes start and finish at

different facilities. Laporte et al. [92] propose a graph transformation of the ULRP to
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reformulate it as TSP. They embed it into a branch-and-bound algorithm so that at each

node in the branching tree the subproblem reduces to an assignment problem. Cappan-

era et al. [26] introduce a two-index commodity-flow formulation of the problem in the

context of locating facilities for the routing of obnoxious materials. In their modeling

approach, customers are allowed to be served by several vehicles. They solve the prob-

lem by means of a branch-and-bound algorithm in which lower bounds are obtained

by Lagrangean relaxation. The Lagrangean subproblems consist in solving a 0-1 mul-

tidimensional knapsack problem and a routing problem. The capacitated LRP (CLRP)

can be seen as a particular case of the LRP in which the vehicle fleet is homogeneous,

of infinite size, the network is symmetric and facilities have limited capacities. Be-

lenguer et al. [19] were the first to give a mathematical formulation of this problem, by

extending the formulation of Laporte et al. [91] to consider facilities with limited ca-

pacities. The authors propose several families of valid inequalities and embed them into

a branch-and-cut algorithm. Their algorithm succeeds to solve instances with up to 50

customers. Another exact algorithm, developed by Baldacci et al. [16], formulates the

problem as a set-partitioning problem in which variables represent feasible routes with

respect to vehicle capacities. A three-phase branch-and-cut-and-price method is applied

which reduces the problem to a (usually) small number of MDVRP. Their algorithm is

able to solve to optimality instances containing up to 199 customers. For dealing with

larger instances of the CLRP, several heuristics have been introduced, namely GRASP

methods [121], memetic algorithms [120], tabu search [122], simulated annealing [147],

hybrid metaheuristics combining variable neighborhood search with integer linear pro-

gramming methods [116] and adaptive large neighborhood search algorithms [78].

2.2 The capacitated location-routing problem

The capacitated location-routing problem (CLRP) is a particular case of the LRP

and can be stated as follows. Given a finite set of potential facilities I, each facility

having a setup cost fi and a capacity bi, a set of customers J, where each customer has

a demand d j, an homogeneous fleet of infinite size, where each vehicle has the same
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capacity Q, and an underlying undirected graph G = (V = I∪J,E), with associated cost

matrix (ce)e∈E , the goal is to select a subset of facilities I′ ⊆ I and to route vehicles

from these facilities so as to visit each customer exactly once at minimum overall cost

while respecting both facility and vehicle capacities. In the following subsections we

describe the different mathematical formulations for this problem as well as the existing

algorithms, including both exact and heuristic methods.

2.2.1 Mathematical formulations

In this subsection we describe two mathematical formulations for the CLRP. The first

is a two-index vehicle-flow formulation introduced by Belenguer et al. [19]. The second

is a set-partitioning formulation introduced by Akca et al. [4].

2.2.1.1 Two-index vehicle-flow formulation

Let G = (V,E) be an undirected graph, where V = I ∪ J and E = {{vi,v j} : vi,v j ∈
V} \ I× I. For every subset U ⊆ V , we define E(U) = {{u,w} ∈ E : u,w ∈ U}, and

δ (U) = {{u,w} ∈ E : u ∈U,w /∈U}. For every pair of disjoint subsets U and W , let

also (U : W ) = {{u,w} ∈ E : u ∈U,w ∈W}. With every edge e ∈ δ (I) are associated

two binary variables: xe equal to 1 iff edge e is used once, and ye equal to 1 iff edge e

is used twice. With every edge e ∈ E(J) is associated a binary variable xe equal to 1 iff

edge e is used. For every facility i ∈ I, let zi be a binary variable equal to 1 iff facility i

is selected. For a given edge set F ⊆ E we define x(F) = ∑e∈F xe and y(F) = ∑e∈F ye

(if F ⊆ δ (I)). For a given subset S ⊆ J of customers, we define d(S) = ∑ j∈S d j, and a

constant r(S) = dd(S)/Qe which is a lower bound on the number of vehicles required to

satisfy the demand of customers in S. Finally, we define S = J \S. The CLRP can then

be formulated as the following integer program.

min ∑
i∈I

fizi + ∑
e∈E

cexe +2 ∑
e∈δ (I)

ceye (VF2)
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subject to

x(δ ( j))+2y(I : { j}) = 2 j ∈ J (2.1)

x(δ (S))+2y(I : S)≥ 2r(S) S⊆ J, |S| ≥ 2 (2.2)

xi j + yi j ≤ zi i ∈ I, j ∈ J (2.3)

x(I : { j})+ y(I : { j})≤ 1 j ∈ J (2.4)

x((I \{i})∪S : S)+2y(I \{i} : S)≥ 2 i ∈ I,S⊆ J,d(S)≥ bi (2.5)

x(δ (S))≥ 2(x({h} : I′)+ x({ j} : I \ I′)) S⊆ J, |S| ≥ 2,h, j ∈ S, I′ ⊂ I (2.6)

zi ∈ {0,1} i ∈ I (2.7)

xe ∈ {0,1} e ∈ E (2.8)

ye ∈ {0,1} e ∈ δ (I). (2.9)

Demand constraints (2.1) impose that every customer vertex be visited once and

also act as flow conservation equations. Constraints (2.2) are the capacity cuts (CC)

which play a dual role: they forbid tours disconnected from facilities as well as tours

serving a demand larger than Q. Constraints (2.3) ensure that there is no outgoing flow

from unselected facilities. Constraints (2.4) forbid single-customer routes to be linked

to two different facilities. Constraints (2.5) are the facility capacity inequalities (FCI).

They forbid the existence of a set of routes leaving from a given facility i and serving a

demand higher than bi. Constraints (2.6) are the path constraints (PC) that prevent the

route of a vehicle from joining two different facilities. These constraints are not valid

when |S|= 1 and they are thus complementary to constraints (2.4).

Unlike in traditional CVRP formulations, two sets of variables (x and y) are associ-

ated with the edges in δ (I). One can in fact check that if these variables are replaced

with the aggregated variables xe = xe +2ye, single-customer routes linked to two differ-

ent facilities can no longer be correctly eliminated as we do with constraints (2.4).
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2.2.1.2 Set-partitioning formulation

Let us denote by Ωi the set of all routes (possibly containing cycles) starting and

ending at facility i ∈ I and servicing a subset of customers with a total demand of Q or

less, and let Ω = ∪i∈IΩi be the set of all possible routes with total accumulated demand

of Q or less. For every l ∈ Ω let us associate a binary variable λl equal to 1 if l appears

in the solution and 0 otherwise, and a cost cl for using this route. For every edge e ∈ E

and route l ∈ Ω let qe
l be the number of times that edge e appears in route l. If Ω

is restricted to contain only elementary routes (i.e. routes without cycles) then qe
l is

a binary constant, otherwise it can be a general integer. Note that if distances satisfy

the triangular inequality, the optimal solution will only contain elementary paths even

if Ω is enlarged to contain routes with cycles. In fact, in this case it is always possible

to construct, from any solution with cycles, another solution with elementary routes at

equal or lower cost. Let us extend the demands to facility nodes by letting dv = 0 for

every v ∈ I. A valid formulation for the CLRP is

min ∑
i∈I

fizi + ∑
l∈Ω

clλl (SPF)

subject to

∑
l∈Ω

∑
e∈δ ({ j})

qe
l λl = 2 j ∈ J (2.10)

∑
l∈Ωi

∑
{h, j}∈E

(dh +d j)q
{h, j}
l λl ≤ 2bizi i ∈ I (2.11)

zi ∈ {0,1} i ∈ I (2.12)

λl ≥ 0 and integer l ∈Ω. (2.13)

2.2.2 Exact algorithms

In this section we describe three algorithms that aim to solve the CLRP exactly.

The first is a branch-and-cut method proposed by Belenguer et al. [19] based on the
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two-index vehicle-flow formulation augmented by several families of valid inequalities.

The second is a branch-and-price method developed by Akca et al. [4] based on the

set-partitioning formulation. The third method is a branch-and-cut-and-price algorithm

developed by Baldacci et al. [16] based on the set-partitioning formulation augmented

by several families of valid inequalities.

2.2.2.1 Branch-and-cut

Belenguer et al. [19] introduced several families of inequalities that are shown to be

valid for formulation (VF2). These valid inequalities are embedded into a branch-and-

cut solver. They include the so-called y-capacity cuts, facility capacity inequalities, path

constraints, degree constraints and co-circuit constraints. These inequalities are comple-

mented with some inequalities from the CVRP, such as multistar inequalities, hypotour

inequalities or strengthened comb inequalities [101]. For each of the constraints used in

their study they introduced efficient separation algorithms based on some greedy criteria

as well as exact methods based on maximum-flow computations. The separation strategy

is as follows: at the root node relaxation, all families of cuts are separated aggresively.

Deeper in the tree, only some cuts are separated and many of them only once at each

node. Regarding the branching strategy, they perform strong branching with priority on

the location variables z. If all location variables are integer at a given node, then they per-

form strong branching on the cutsets defined by the y-capacity cuts added to the problem

during the root relaxation. Their computational experience shows that their algorithm is

very effective for dealing with small and medium size instances of the CLRP with up to

50 customers. However, some instances with 50 instances cannot be solved with their

method and the behaviour on larger instances is not reported.

2.2.2.2 Branch-and-price

The branch-and-price algorthm introduced by Akca et al. [4] is based on formulation

(SPF). In this formulation, the set Ω is first restricted to contain a limited number of

routes. At each iteration of the algorithm, set Ω is enlarged to contain the columns that
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have negative reduced costs with respect to the constraints defining problem (SPF). It

can be shown that, in fact, this problem can be formulated as a shortest path problem with

resource constraints (SPPRC), which has been introduced by Desrosiers et al. [51] for

the VRP with time windows. Routes in the optimal solution of the CLRP will contain no

cycles, so it is natural to restrict Ω to contain only elementary routes (i.e. routes without

cycles). This is a N P-hard problem for which the most efficient known algorithms are

based on dynamic programming [23, 27, 49, 55, 128]. An interesting relaxation of this

problem is the 2-cyc-SPPRC in which routes are allowed to have cycles of length three

or more, but cycles containing two customers are forbidden. This problem is known

to be solvable in pseudo-polynomial time but the root relaxation of problem (SPF) is

weaker when Ω is enlarged to contain routes with cycles. In the algorithm of Akca et al.

[4] both variants of the problem were used. Their computational results show that their

algorithms do not scale well with the size of the instances, being able to solve only small

instances with up to 40 customers in reasonable computing times.

2.2.2.3 Branch-and-cut-and-price

Baldacci et al. [16] introduced a branch-and-cut-and-price algorithm for the CLRP

based on formulation (SPF). Their algorithm works in three stages. In the first stage,

they relax the problem and solve the resulting relaxation by column generation using

the pricing algorithm of Christofides et al. [32]. They use the bound provided by this

relaxation to enumerate all the possible configurations of open facilities that could lead

to an improvement of the upper bound. Note that for this to make sense, a valid upper

bound of the problem must be available in advance. Moreover, a bad quality upper

bound has a strong incidence on the performance of this procedure. Once this problem

is solved and all the possible configurations of open facilities are available, the resulting

MDVRPs are solved by column-and-cut generation in the second stage. They strengthen

formulation (SPF) with the inclusion of a strengthened version of the capacity cuts and

also clique inequalities. Their algorithm provides strong lower bounds that usually lie

below of 1% of the best known solutions. In the final stage, the remaining columns are

enumerated following a very similar method to the used by Baldacci et al. [14, 15].
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The resulting integer program is then solved by means of a commercial solver. This

algorithm has produced the tightest lower bounds in the literature and is succesful for

solving instances with up to 199 customers.

2.2.3 Heuristic algorithms

In this section we describe some of the heuristic algorithms for the CLRP. It includes

a GRASP algorithm [121], a memetic algorithm with population management [120], a

tabu search algorithm [122], a hybrid metaheuristic combining variable neighborhood

search (VNS) with integer linear programming techniques [116], a simulated annealing

method [147] and an adaptive large neighborhood search algorithm [78].

2.2.3.1 A GRASP algorithm

GRASP (acronym for greedy randomized adaptive search procedure) is a simple

metaheuristic paradigm that adds randomization to a given deterministic greedy algo-

rithm in order to diversify the search. Prins et al. [121] described the following GRASP

algorithm for the CLRP. They introduce what they call an extended Clarke and Wright

savings algorithm (ECWSA), which is based on the well known Clarke and Wright sav-

ings algorithm (CWSA) [35] for the CVRP. In the ECWSA, customers are sequentially

assigned to their closest facility with sufficient capacity, regardless of the setup costs.

Once every customer has been assigned and is served by a single-customer route, a

merging operator sequentially takes two routes and merges them. Any two routes are

considered for merging, regardless if they belong to the same facility or not. The result-

ing merged route will be assigned to the closest facility, that may be different from the

facilities to which they were originally assigned. The mergings are done either following

a best improvement or first improvement criterion. However, only improving moves are

accepted. When no further mergings with positive improvement can be found, facili-

ties without any route assigned to them are closed. In the randomized version of this

algorithm, the route merging operator does not follow the best improvement or first im-

provement rule. Instead, for a certain parameter α > 0, at most the best α moves with
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positive improvement are kept in memory at any iteration. When finished inspecting all

the merging possibilities, a move is randomly taken and performed among those saved.

They call this algorithm randomized ECWSA (RECWSA). RECWSA is repeated several

times, thus obtaining several different solutions due to the randomization introduced to

the algorithm. To every pair of solutions, a path relinking procedure is performed. Path

relinking is another metaheuristic that, given a pair of solutions, guides the search to-

wards the straight segment defining these two solutions with the hope of obtaining a

better solution in the middle of the path. For two solutions that are very similar, path

relinking usually fails in improving the quality of solutions. For that reason, it is often

restricted to pairs of solutions that are far given a certain notion of distance.

2.2.3.2 A memetic algorithm with population management

Memetic algorithms (MA) are a special case of genetic algorithms in which the in-

tensification phase is performed by local search procedures. Memetic algorithms with

population management (MAPM) are a modified version of MA in which a population

of elite solutions is maintained at every iteration, and such that the inclusion of a new

solution in the population is subject to some diversification parameter ∆. If ∆ repre-

sents a threshold distance, then a new solution S will be inserted into population P if

the distance from S to P is greater than or equal to ∆. Otherwise, the solution S is

discarded. MAPM algorithms were first introduced to solve the multidimensional 0-1

knapsack problem by Sörensen and Sevaux [137]. In Prins et al. [120], solutions are

coded as chromosomes. These chromosomes can be coded using |I|+ |J| bytes and then

solutions can be obtained from those chromosomes by using the giant tours split pro-

cedure [132] by solving a series of shortest path problems. A crossover operator aims

to obtain children as a combination of two chromosomes (called the parents). Local

search is then applied to the resulting children. A distance function d(S,T ) between

chromosomes S,T is defined, and for a population P with S /∈P the distance is given

by d(S,P) = minT∈P d(S,T ).
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2.2.3.3 A cooperative lagrangean relaxation-granular tabu search

Tabu search is a popular metaheuristic procedure first introduced by Glover and La-

guna [64]. It is a descent-like procedure in which, given a neighborhood, the best move-

ment is performed even if it leads to a deterioration of the current solution. In order

to avoid cycling, a tabu list keeps track of the last movements performed, so the oppo-

site movements are declared tabu during a certain number of iterations. The concept

of granularity can be used to restrict a neighborhood to contain only a small subset

of moves, so as to accelerate the search [141]. The algorithm presented in Prins et al.

[122] consists of two main procedures. The first one is a pure CFLP which is heuris-

tically solved by a Lagrangean method. Given a set of routes defining a solution, one

creates a set of super-customers. Each super-customer represents the aggregation of all

the customers of a route. The sequence of customers is disconnected from the facility

and its two endpoints are reconnected so as to create a subtour. The cost of assigning a

super-customer to a given facility is given by the routing cost incurred from assigning

such subtour to the facility using as endpoints the two consecutive nodes in the subtour

that minimize its routing cost. The second procedure corresponds to a pure MDVRP in

which the open facilities are fixed in advance. A tabu search procedure is used to find

a good routing solution, and granularity is used to accelerate the neighborhood inspec-

tion. The authors realized that these two procedures rapidly converge to local optima.

In order to escape from this local optimum, a restart procedure is applied in the location

phase in which routes are first split into two or more routes. This procedure creates more

super-customers with lower demands, thus providing more flexibility for the solution of

the resulting CFLP.

2.2.3.4 A variable neighborhood search coupled with ILP-based heuristics

Variable neighborhood search (VNS) [75, 76] is a recently introduced metaheuristic

based on a simple observation. Let minx{ f (x) : x∈X } be a combinatorial problem. Let

x ∈X be a feasible solution of that problem and N = {Nk(x)}kmax
k=1 a family of neigh-

borhoods around x. Given any neighborhood Nk(x), consider a randomized algorithm
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that picks a random point x′ ∈ Nk(x). Then, local search procedures are applied to x′ to

obtain another point x′′. If f (x′′) < f (x) then the solution is updated and the procedure

is repeated. The algorithm starts from an initial solution y ∈X and from the first neigh-

borhood N1(y), and neighborhoods are inspected in increasing order of k. Each time a

new solution is found, the procedure is restarted with k = 1 and continues until that a

certain stopping criteria is met. Pirkwieser and Raidl [116] developed a VNS algorithm

for the CLRP coupled with the resolution of several integer-linear programs. In their

method, a solution S of the problem (not necessarily feasible in terms of capacities) is

given at any iteration. The set of neighborhoods contains 18 different neighborhoods,

some of them nested. The idea is to perform VNS during a certain number of iterations

or until reaching local optimality. The local search procedures contain the solution of

some integer-linear programs, namely a CFLP and a reallocation problem (RM) [48].

The first is performed more often than the second due to the difficulty to solve the latter

problems.

2.2.3.5 A simulated annealing algorithm

Simulated annealing (SA) is a popular metaheuristic which includes a simple mech-

anism to avoid getting trapped in local optima. This procedure owes its name to the

annealing process in metallurgy, in which a given piece of metal is heated above its re-

crystallization temperature, modified in its shape and then cooled. In combinatorial op-

timization, the SA method was first inroduced by Metropolis et al. [104] and then made

popular by Kirkpatrick et al. [83]. Given a combinatorial problem minx{ f (x) : x ∈X },
a point x ∈X (the incumbent) and a neighborhood N(x), another point x′ ∈ N(x) is

obtained randomly in N(x). If f (x′) < f (x) then the new solution is accepted and the

incumbent is updated. Otherwise, the solution will be accepted with a probability given

by the Boltzmann function exp(−∆/kT ), where ∆= f (x′)− f (x), k is a constant and T is

the cooling temperature. Normally, the cooling temperature T decreases in time, so as to

lower the probability of accepting worse solutions than the incumbent. At the beginning

of the algorithm, T is set to a high value and the search often visits bad solutions with

the hope of escaping from local optima, whereas at the end of the algorithm only solu-
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tions with costs close to the incumbent will be accepted. Yu et al. [147] presented a SA

algorithm for the CLRP. In their method, several neighborhoods are considered, namely

insertion, swap and 2-opt moves. At each iteration, one of these moves is chosen with

an uniform probability of 1/3.

2.2.3.6 An adaptive large neighborhood search algorithm

Large neighborhood search (LNS) is a recently introduced heuristic [134]. It is based

on the concept of destroy and repair, in which two sets of operators D = {Dk}kD
k=1 (de-

stroying operators) and R = {Rk}kR
k=1 (repairing operators) are considered. At each iter-

ation, a pair of operators (D,R) ∈D×R is randomly selected and applied sequentially.

The destroy operator D takes a complete solution and returns an incomplete solution, in

which certain edges or nodes are missing or disconnected from the rest of the solution.

The repair operator R is then applied to the incomplete solution and returns a new com-

plete solution. This procedure is repeated until a certain criterion is met. In the adaptive

LNS (ALNS) the destroy and repair operators are ranked at every iteration according to

their success to improve solutions during previous iterations. In subsequent iterations,

the pair of operators (D,R) chosen to destroy and repair a given solution are taken not

using an uniform distribution but rather a probability function that gives a higher prob-

ability to operators with higher rankings. This method has been successfully applied to

different classes of vehicle routing problems [117, 129]. Hemmelmayr et al. [78] devel-

oped an ALNS heuristic for the two-echelon VRP (2E-VRP), of which the CLRP arises

as a particular case. Destroy and repair operators contain moves involving insertion,

deletion or swapping of facilities, customers or full routes. They complement the search

with the use of some efficient local search procedures that are applied at some selected

parts of their algorithm.



CHAPTER 3

BRANCH-AND-CUT ALGORITHMS

Notes about the chapter

The contents of this chapter correspond to those of the article entitled A Computa-

tional Comparison of Flow Formulations for the Capacitated Location-Routing Prob-

lem, co-authored with Professors Jean-François Cordeau and Bernard Gendron, which

has been submitted for publication to Discrete Optimization (ISSN: 1572-5286), in July

2011. Preliminary results have also been presented in several conferences and work-

shops, including the VI ALIO/EURO Workshop on Applied Combinatorial Optimization,

in Buenos Aires, Argentina (2009) and Optimization Days 2009, in Montréal, Canada

(2009).



22

A Computational Comparison of Flow
Formulations for the Capacitated

Location-Routing Problem
Claudio Contardo1,3,∗, Jean-François Cordeau2,3, Bernard Gendron1,3

1Département d’informatique et de recherche opérationnelle, Université de Montréal

C.P. 6128, succ. Centre-ville, Montréal (PQ) Canada H3C 3J7

2Canada Research Chair in Logistics and Transportation and HEC Montréal

3000 chemin de la Côte-Sainte-Catherine, Montréal (PQ) Canada H3T 2A7

3Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport (CIRRELT)

C.P. 6128, succ. Centre-ville, Montréal (PQ) Canada H3C 3J7

In this paper we present a computational comparison of four different flow formulations

for the capacitated location-routing problem. We introduce three new flow formulations

for the problem, namely a two-index two-commodity flow formulation, a three-index

vehicle-flow formulation and a three-index two-commodity flow formulation. We also

consider the known two-index vehicle-flow formulation of Belenguer et al. [19] and

extend it by considering new families of valid inequalities and separation algorithms.

We introduce new branch-and-cut algorithms for each of the formulations and compare

them on a wide number of instances. Our results show that compact formulations can

produce tight gaps and solve many instances quickly, whereas three-index formulations

scale better in time.
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3.1 Introduction

In the Capacitated Location-Routing Problem (CLRP) we are given a set I of poten-

tial facility locations and a set J of customers. The problem consists in selecting a subset
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of facilities and in designing vehicle routes around these facilities so that every customer

is visited exactly once. Each facility i ∈ I has a capacity bi and a fixed cost fi. The fleet

is unlimited and each vehicle has a capacity Q. Each customer j ∈ J has a demand d j.

We define a graph G = (V,E) where V = I ∪ J is the vertex set and E is the edge set.

With every edge {i, j} ∈ E is associated a cost ci j for using edge {i, j}. Each route must

start from and return to the same selected facility, and the sum of the demands of the

customers served along a route cannot exceed Q. In addition, the total demand of the

customers served in routes from facility i cannot exceed bi. The objective consists in

minimizing the sum of the routing costs and the fixed costs associated with the selected

facilities.

A three-index mixed-integer programming formulation for the CLRP was introduced

by Perl and Daskin [115] for the general case of an asymmetric network, heterogeneous

vehicles and heterogeneous facilities. Its linear programming relaxation does not, how-

ever, provide lower bounds that are tight enough to be used within a branch-and-cut

algorithm. Laporte et al. [91] proposed the first two-index vehicle-flow formulation for

the LRP with uncapacitated facilities (ULRP). They have considered vehicle capacity

cuts (CC) as well as chain barring constraints (CBC) and, by means of a branch-and-

bound algorithm, were able to solve small size instances. Based on this work, Belenguer

et al. [19] recently proposed a two-index integer programming formulation for the CLRP,

providing strengthened versions of the CC and the CBC. They also introduced a new

version of the facility capacity inequalities (FCI) and other constraints such as co-circuit

constraints and depot degree constraints. The lower bounds obtained by their algorithm

are very tight and suggest that by improving the separation algortithms as well as de-

veloping new families of valid inequalities, the cutting-plane approach would lead to a

successful methodology for solving medium or even large size instances of the CLRP.

Akca et al. [4] have introduced a mixed set partitioning / knapsack formulation by doing

a Dantzig-Wolfe decomposition of the three-index formulation that is solved by means of

a branch-and-price method. The pricing problem consists in finding elementary paths of

minimum reduced cost under capacity constraints. The lower bounds obtained by their

algorithm show a significant improvement with respect to those obtained by the algo-
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rithms based on the two-index vehicle-flow formulation. More recently, Baldacci et al.

[16] have proposed a branch-and-cut-and-price algorithm. They apply two bounding

procedures to compute a tight lower bound, followed by the optimal solution of a small

number of multiple depot vehicle routing problems (MDVRP). They provide a strength-

ened version of the CC as well as clique inequalities for the set-partitioning problem.

Their algorithm improves the lower bounds of the previous approaches and solves to

optimality instances with up to 199 customers and 14 facilities.

The CLRP is known to be N P-hard, as it combines (and includes as particular

cases) both the Capacitated Vehicle Routing Problem (CVRP) and the Capacitated Facil-

ity Location Problem (CFLP). Authors have thus focused their attention on the develop-

ment of heuristic methods to find good quality solutions in reasonable computing times.

Most of these heuristics are based on decomposition techniques that solve a location

(design) and a routing (operational) sub-problem. Depending on whether the algorithm

iterates between the two subproblems, we distinguish between sequential algorithms

[115] and iterative algorithms [77, 97, 99, 146]. Tuzun and Burke [142] decompose the

problem into a location and a routing subproblem, but the location decisions at each it-

eration only consider the opening of new facilities or the swapping of two already open

facilities, so the whole algorithm rapidly converges to a local optimum. Other heuristics

include memetic algorithms [120] or Lagrangian heuristics [113].

The main contributions of this paper can be summarized as follows:

i. We introduce three new formulations based on vehicle flows and commodity flows,

which are proven to dominate, in terms of the linear relaxation lower bound,

the two-index vehicle-flow formulation of Belenguer et al. [19] at the expense

of adding more variables.

ii. We derive two new families of multistar inequalities from the commodity-flow for-

mulations and introduce separation algorithms for using them inside the vehicle-

flow formulations.

iii. We introduce several new families of valid inequalities for the formulations intro-

duced in this paper, and strengthen several of the existing ones.
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iv. We introduce new, efficient separation algorithms for the inequalities used in our

algorithms, which in many cases generalize those introduced by Belenguer et al.

[19].

v. We perform a computational study comparing each of the formulations on a large

number of instances and discuss their advantages and disadvantages.

The rest of the paper is organized as follows. In Section 3.2 we first describe the

two-index formulation introduced by Belenguer et al. [19]. We then introduce the three

new formulations based on vehicle flows and commodity flows. We prove that for the

case of the comodity-flow formulations, some new classes of multistar inequalities are

implied. In Section 3.3 we present both existing and new families of valid inequalities

for the CLRP. In Section 3.4 we begin by introducing a general heuristic for generating

cuts, and we then introduce the separation algorithms for each of the valid inequalities

introduced in the paper. In Section 3.5 we describe the branch-and-cut algorithms used in

our experiments by specifying the separation and branching strategies. In Section 3.6 we

present a computational study performed after running our algorithms on several families

of instances. This is followed by the conclusions in Section 3.7. To improve clarity, we

provide in a separate section the proofs of the lemmas and propositions introduced in

Sections 3.2, 3.3 and 3.4.

3.2 Mathematical Formulations

In this section we first describe the two-index formulation introduced by Belenguer

et al. [19] for the CLRP with a homogeneous fleet and symmetric costs. We then intro-

duce three new formulations based on vehicle flows and two-commodity flows.

3.2.1 A two-index vehicle-flow formulation [19]

We first introduce the notation that we will use throughout the article and then present

the formulation itself.

Let G = (V,E) be an undirected graph, where V = I ∪ J and E = {{vi,v j} : vi,v j ∈
V} \ I× I. For every subset U ⊆ V , we define E(U) = {{u,w} ∈ E : u,w ∈ U}, and
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δ (U) = {{u,w} ∈ E : u ∈U,w /∈U}. For every pair of disjoint subsets U and W , let

also (U : W ) = {{u,w} ∈ E : u ∈U,w ∈W}. With every edge e ∈ δ (I) are associated

two binary variables: xe equal to 1 iff edge e is used once, and ye equal to 1 iff edge e

is used twice. With every edge e ∈ E(J) is associated a binary variable xe equal to 1 iff

edge e is used. For every facility i ∈ I, let zi be a binary variable equal to 1 iff facility i

is selected. For a given edge set F ⊆ E we define x(F) = ∑e∈F xe and y(F) = ∑e∈F ye

(if F ⊆ δ (I)). For a given subset S ⊆ J of customers, we define d(S) = ∑ j∈S d j, and a

constant r(S) = dd(S)/Qe which is a lower bound on the number of vehicles required to

satisfy the demand of customers in S. Finally, we define S = J \S. The CLRP can then

be formulated as the following integer program.

min ∑
i∈I

fizi + ∑
e∈E

cexe +2 ∑
e∈δ (I)

ceye (VF2)

subject to

x(δ ( j))+2y(I : { j}) = 2 j ∈ J (3.1)

x(δ (S))+2y(I : S)≥ 2r(S) S⊆ J, |S| ≥ 2 (3.2)

xi j + yi j ≤ zi i ∈ I, j ∈ J (3.3)

x(I : { j})+ y(I : { j})≤ 1 j ∈ J (3.4)

x((I \{i})∪S : S)+2y(I \{i} : S)≥ 2 i ∈ I,S⊆ J,d(S)≥ bi (3.5)

x(δ (S))≥ 2(x({h} : I′)+ x({ j} : I \ I′)) S⊆ J, |S| ≥ 2,h, j ∈ S, I′ ⊂ I (3.6)

zi ∈ {0,1} i ∈ I (3.7)

xe ∈ {0,1} e ∈ E (3.8)

ye ∈ {0,1} e ∈ δ (I). (3.9)

Demand constraints (3.1) impose that every customer vertex be visited once and

also act as flow conservation equations. Constraints (3.2) are the capacity cuts (CC)

which play a dual role: they forbid tours disconnected from facilities as well as tours
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serving a demand larger than Q. Constraints (3.3) ensure that there is no outgoing flow

from unselected facilities. Constraints (3.4) forbid single-customer routes to be linked

to two different facilities. Constraints (3.5) are the facility capacity inequalities (FCI).

They forbid the existence of a set of routes leaving from a given facility i and serving a

demand higher than bi. Constraints (3.6) are the path constraints (PC) that prevent the

route of a vehicle from joining two different facilities. These constraints are not valid

when |S|= 1 and they are thus complementary to constraints (3.4).

Unlike in traditional CVRP formulations, two sets of variables (x and y) are associ-

ated with the edges in δ (I). One can in fact check that if these variables are replaced

with the aggregated variables xe = xe +2ye, single-customer routes linked to two differ-

ent facilities can no longer be correctly eliminated as we do with constraints (3.4).

3.2.2 A three-index vehicle-flow formulation

Due to their large number of variables, three-index formulations for vehicle routing

problems have limited practical interest. In these formulations, two indices represent a

certain edge while the third index indicates which vehicle uses this edge. These formula-

tions naturally provide tighter bounds than their two-index counterparts when augmented

by all of the known valid inequalities. However, they also present a lot of symmetry that

makes them of little use within a branch-and-bound framework. We introduce a three-

index formulation which does not suffer from this issue. Indeed, we use the third index

to specify the facility from which the edge is being visited. Symmetry is then not an issue

because switching two facilities does not provide an alternate equivalent solution, either

because of feasibility (facility capacities may not be the same) or costs (switching routes

from one facility to another usually produces a change in either the routing costs or the

fixed costs). Using the same notation as for the two-index vehicle-flow formulation, we

define binary variables xi
e equal to 1 iff edge e is used once by a vehicle being from

facility i ∈ I (naturally xi
l j = 0 if l, i ∈ I, l 6= i). We also let yi j be a binary variable equal

to 1 iff edge e = {i, j} is used twice (for single-customer routes) by a vehicle linked to

facility i. We let ui j be a binary variable equal to 1 iff customer j is served from facility

i. Let us define the following notation. For an edge subset F ⊆ E and a facility subset
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H ⊆ I we let xH(F) = ∑i∈H ∑e∈F xi
e, and if H = {i} is a singleton we let xi(F) = x{i}(F).

The formulation is the following,

min ∑
i∈I

fizi +∑
i∈I

∑
e∈E

cexi
e +2∑

i∈I
∑
j∈J

ci jyi j (VF3)

subject to

xi(δ ({ j}))+2yi j = 2ui j i ∈ I, j ∈ J (3.10)

xi(δ (S))+2y({i} : S)≥ 2
Q ∑

j∈S
d jui j i ∈ I,S⊆ J, |S| ≥ 2 (3.11)

∑
j∈J

d jui j ≤ bizi i ∈ I (3.12)

∑
i∈I

ui j = 1 j ∈ J (3.13)

xi
i j + yi j ≤ ui j ≤ zi i ∈ I, j ∈ J (3.14)

zi ∈ {0,1} i ∈ I (3.15)

xi
e ∈ {0,1} i ∈ I,e ∈ E (3.16)

ye ∈ {0,1} e ∈ δ (I) (3.17)

ui j ∈ {0,1} i ∈ I, j ∈ J. (3.18)

Constraints (3.10) are a disaggregated form of the degree equations (3.1), whereas

constraints (3.11) are a disaggregated form of the capacity inequalities (3.2). Constraints

(3.12) are the facility capacity inequalities. Constraints (3.13) are the assignment con-

straints of customers to facilities. Constraints (3.14) link the assignment variables with

the flow and location variables.

3.2.3 A two-index two-commodity flow formulation

Each facility node i ∈ I is considered as a source of flow, to which we consider an

additional sink node i′. Let us denote the set of sink facility nodes as I′, and consider the
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augmented undirected graph G = (V ,E) with V = V ∪ I′ and E = E ∪{e = {i′, j} : i′ ∈
I′, j ∈ J}. A route starting and ending at a facility i in the original graph will be mapped

to a flow in the new graph starting at i and arriving to i′. For this purpose, let us introduce

the following set of continuous variables. For every edge e = {i, j} ∈ E, we define an

arc variable wi j which denotes the amount of flow traversing edge e if e is traversed from

node i to node j, and w ji represents the remaining capacity on the vehicle traversing this

edge. If the trip is done in the opposite direction the roles of wi j and w ji are reversed. To

take into account the orientation defined by these new variables, we define for every set

U ⊆V , w(δ+(U)) = ∑u∈U,v/∈U wuv, w(δ−(U)) = ∑u∈U,v/∈U wvu. We keep variables y for

single-customer trips, while variables w are only used for multiple-customer routes (i.e.,

routes serving two or more customers). The following set of constraints are thus valid

for the CLRP

w(δ−({ j}))−w(δ+({ j}))+2d jy(I : { j}) = 2d j j ∈ J (3.19)

w(δ+({i}))+ ∑
j∈J

d jyi j ≤ bizi i ∈ I (3.20)

w(δ+({i′})) = Qx(δ ({i})) i′ ∈ I′ (3.21)

wi j +w ji = Qxi j {i, j} ∈ E (3.22)

wi j,w ji ≥ 0 {i, j} ∈ E. (3.23)

Now, vehicle capacities and facility capacities are implied by (3.19)-(3.23). A valid

formulation for the CLRP is given by

min ∑
i∈I

fizi + ∑
e∈E

cexe +2 ∑
e∈δ (I)

ceye (CF2)

subject to (3.1), (3.3)-(3.4), (3.6)-(3.9), (3.19)-(3.23).

Baldacci et al. [13] proved that the following flow inequalities (FI) are valid for the

two-index two-commodity flow formulation of the CVRP:
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(Q−d j)wi j−d jw ji ≥ 0 {i, j} ∈ E (3.24)

(Q−di)w ji−diwi j ≥ 0 {i, j} ∈ E. (3.25)

It is straightforward to check that they also are for the CLRP. As stated by the follow-

ing proposition, they also imply the following y-generalized large multistar inequalities

(y-GLM),

Proposition 3.2.1. The following y-generalized large multistar inequalities (y-GLM) are

implied by formulation (CF2) when augmented with the flow inequalities (FI):

x(δ (S))+2 ∑
j∈S

d j

Q
y(I : { j})≥ 2

Q

d(S)+ ∑
h∈S
j/∈S

d jxh j

 . (3.26)

The generalized large multistar inequalities (GLM) which are valid for the CLRP

differ from these inequalities in the coefficients d j/Q multiplying the terms y(I : { j})
which are replaced by 1. Therefore, the y-GLM dominate the GLM.

3.2.4 A three-index two-commodity flow formulation

Let us consider the three-index vehicle-flow formulation (VF3). As for the previous

formulation, we consider the augmented graph G and we use variables wi
h j,w

i
jh for the

flow traversing edge {h, j} from facility i and for the remaining capacity in the vehicle,

respectively. We keep variables yi j for single-customer routes. For a facility i∈ I∪ I′ and

a node subset U ⊆V we denote wi(δ+(U)) =∑u∈U,v/∈U wi
uv, wi(δ−(U)) =∑u∈U,v/∈U wvu.

Formulation (VF3) can thus be augmented by adding these variables and the following

set of constraints:
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wi(δ−({ j}))−wi(δ+({ j}))+2d jyi j = 2d jui j i ∈ I, j ∈ J (3.27)

wi(δ+({i}))+ ∑
j∈J

d jyi j ≤ bizi i ∈ I (3.28)

wi(δ+({i′})) = Qxi(δ ({i})) i′ ∈ I′ (3.29)

wi
h j +wi

jh = Qxi
h j i ∈ I,{h, j} ∈ E (3.30)

wi
h j,w

i
jh ≥ 0 i ∈ I,{h, j} ∈ E. (3.31)

The new formulation for the CLRP is the following

min ∑
i∈I

fizi +∑
i∈I

∑
e∈E

cexi
e +2∑

i∈I
∑
j∈J

ci jyi j (CF3)

subject to (3.10), (3.13)-(3.18), (3.27)-(3.31).

Note that the following disaggregated flow inequalities (DFI) are valid for this for-

mulation

(Q−d j)wi
h j−d jwi

jh ≥ 0 i ∈ I,{h, j} ∈ E (3.32)

(Q−dh)wi
jh−dhwi

h j ≥ 0 i ∈ I,{h, j} ∈ E. (3.33)

As a consequence of the extra variables added with respect to the two-index two-

commodity flow formulation, this one also implies the following y-location routing gen-

eralized large multistar inequalities (y-LRGLM),

Proposition 3.2.2. The following y-location routing generalized large multistar inequal-

ities (y-LRGLM) are implied by formulation (CF3) plus the disaggregated flow inequal-

ities (DFI).

xI\H(δ (S))+2 ∑
j∈S

d j
Q y(I \H : { j})≥ 2

Q

 ∑
i∈I\H

∑
j∈S

d jui j + ∑
h∈S
j/∈S

d jx
I\H
h j

 . (3.34)

Remark Note that the particular case H = /0 corresponds to the y-GLM (3.26).
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3.3 Valid Inequalities

In this section we consider several families of valid inequalities that can be used to

strengthen the linear relaxation of the previous formulations. We first describe known

inequalities and then introduce new families of valid inequalities.

3.3.1 Known valid inequalities

In this subsection we describe valid inequalities that are already known for the CLRP.

These include constraints for the CVRP such as framed capacity inequalities (FrCI),

strengthened comb inequalities (SCI), multistar inequalities (MSI), hypotour inequalities

(HYP), y-capacity cuts (y-CC), strengthened facility capacity inequalities (SFCI), co-

circuit constraints (CoCC) and facility degree constraints (FDC). For details on each of

these inequalities we refer to Lysgaard et al. [101] and to Belenguer et al. [19].

3.3.1.1 Inequalities for the CVRP

If nodes in I are contracted into a single node, the resulting problem can be seen as

a CVRP instance. If a cut valid for the CVRP is such that the coefficients of the edges

joining the depot to customers do not vary with the depot (as the distance, for instance),

this cut remains valid for the CLRP by considering this contracted graph. This is the

case for all of the known valid inequalities, in particular, strengthened comb inequalities,

multistar inequalities, generalized large multistar inequalities, framed capacity inequal-

ities and hypotour inequalities [101]. We add them all except for the generalized large

multistar inequalities which are replaced by the y-GLM (3.26).

3.3.1.2 y-Capacity cuts [19]

Let us consider constraints (3.2) for a given customer set S. Additionally, suppose

that we are given a customer subset S′ satisfying r(S \ S′) = r(S). The following con-

straint, called y-capacity cut or simply y-CC, is valid for the CLRP and dominates (3.2):

x(δ (S))+2y(I : S\S′)≥ 2r(S). (3.35)
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For the proof that these constraints are valid, we refer to Belenguer et al. [19].

3.3.1.3 Strengthened facility capacity inequalities [19]

For a given facility set I′, let us denote b(I′) =∑i∈I′ bi. Belenguer et al. [19] proposed

the following two strengthenings for inequalities (3.5). Let S ⊆ J and i ∈ I be as in

inequalities (3.5). Let I′ ⊂ I be a subset of facilities such that i ∈ I′. If a subset S′ ⊂ S

is such that d(S\S′)> b(I′) then the following strengthened facility capacity inequality

(SFCI) is valid for the CLRP:

x((I \ I′)∪ S̄ : S)+2y(I \ I′ : S\S′)≥ 2. (3.36)

Let r(S, I′) = d(d(S)− bI′)/Qe be a lower bound on the number of vehicles needed

to serve the demand of customers in S from facilities other that those in I′. Note that

although r(·) and r(·, ·) represent different quantities, the overloaded notation satisfies

r(S, /0) = r(S) for every S⊆ J. The following inequality is valid for the CLRP:

x((I \ I′)∪ S̄ : S)+2y(I \ I′ : S)≥ 2r(S, I′ \{i})+2zi(r(S, I′)− r(S, I′ \{i})). (3.37)

We call these inequalities the effective SFCI (ESFCI). For the validity of these in-

equalities we refer again to Belenguer et al. [19].

3.3.1.4 Co-circuit constraints [19]

The co-circuit constraints (CoCC) state that the graph resulting from the deletion of

the y variables must still have an even number of edges. They can be written as

x(δ (S)\F)≥ x(F)−|F |+1 (3.38)

for S⊆ J, F ⊆ δ (S) and |F | odd.
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3.3.1.5 Facility degree constraints [19]

The facility degree constraints (FDC) are valid under the assumption that the triangle

inequality holds for the edge distances. It states the sub-optimality of solutions in which

two or more vehicles serve a given set of customers if these customers can be served by

fewer vehicles (thus saving travel time). For single-customer routes they can be written

as

y(i : S)≤ zi (3.39)

∀S⊆ J such that dh +d j ≤ Q,∀h 6= j ∈ S,∀i ∈ I. For general routes, they can be written

as

2y(i : S)+ x(i : S)+ x(E(S))≤ 2zi + |S|−1 (3.40)

∀i ∈ I,∀S⊆ J,r(S) = 1.

3.3.2 New valid inequalities

In this subsection we introduce new families of valid inequalities for the CLRP.

These include strengthened versions of the SFCI, ESFCI, location-routing comb inequal-

ities (LRCOMB), location-routing generalized large multistar inequalities (LRGLM)

and flow-assignment inequalities (FAI), all of which are valid for the two-index for-

mulations and by extension for the three-index formulations as well. Moreover, we

strengthen some of these inequalities for the case of the three-index formulations, and

add some novel classes of inequalities that cannot be derived from the former.

3.3.2.1 Flow-assignment inequalities

It is easy to check that the following inequalities are valid for the two-index and three

index commodity-flow formulations, respectively:

wi j +w ji ≤ Q {i, j} ∈ E (3.41)

wl
i j +wl

ji ≤ Q l ∈ I,{i, j} ∈ E. (3.42)
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However, they can be strengthened as a consequence of the following two observa-

tions. First, for every edge e = {i, j} ∈ E, at least one node i or j belongs to J. For that

node, say j, it cannot happen at the same time that edge {i, j} is used by a vehicle serving

two or more customers and j is served by a single-cutomer route. Thus, the following

flow-assignment inequalities (FAI) are valid for the CLRP:

xi j + y(I : { j})≤ 1 j ∈ J,{i, j} ∈ E. (3.43)

wi j +w ji +Qy(I : { j})≤ Q j ∈ J,{i, j} ∈ E. (3.44)

xl
i j + yl j ≤ ul j l ∈ I, j ∈ J,{i, j} ∈ E. (3.45)

wl
i j +wl

ji +Qyl j ≤ Qul j l ∈ I, j ∈ J,{i, j} ∈ E. (3.46)

In the case of the three-index formulations, constraints (3.45)-(3.46) impose a strong

relationship between the flow variables and the customers assignments. Indeed, if a

customer is not assigned to a given facility, then all flow variables associated to the

corresponding facility and linked to that customer are automatically set to 0.

3.3.2.2 Disaggregated co-circuit constraints

The co-circuit constraints (3.38) ensure that an even number of edges will traverse

a given customer subset S ⊆ J. This is in particular valid when restricted to the edges

used by some facility. Thus, for the particular case of the three-index formulations the

following disaggregated co-circuit constraints (DCoCC) are valid for the CLRP:

xi(δ (S)\F)≥ xi(F)−|F |+1 i ∈ I,S⊆ J,F ⊂ δ (S), |F | odd. (3.47)

Proposition 3.3.1. Constraints (3.47) are valid for the CLRP.

3.3.2.3 Disaggregated facility degree constraints

Using the same reasoning as for the CoCC, the facility degree constraints (3.40) also

have their disaggregated counterpart. Indeed, if distances satisfy the triangle inequality,
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the following inequalities are valid for the three-index formulations of the CLRP:

xi(i : S)+2y(i : S)+ xi(E(S))≤ ∑
j∈S

ui j + zi i ∈ I,S⊆ J,d(S)≤ Q. (3.48)

Proposition 3.3.2. Constraints (3.48) are valid for the CLRP.

3.3.2.4 Strengthened facility capacity inequalities

Let us consider inequalities (3.36) for given S ⊆ J and I′ ⊆ I. If S′ ⊂ S is such that

r(S\S′, I′) = r(S, I′) let us consider the following inequality:

x((I \ I′)∪S : S)+2y(I \ I′ : S\S′)≥ 2r(S, I′). (3.49)

Proposition 3.3.3. Constraints (3.49) are valid for the CLRP.

As these constraints dominate (3.36), we will now refer to these inequalities as SFCI.

These constraints are valid for all the formulations studied in this paper. However, for

the three-index case they can be strengthened to the following constraints:

xI\I′(δ (S))+2y(I \ I′ : S\S′)≥ 2r(S, I′). (3.50)

3.3.2.5 Effective strengthened facility capacity inequalities

Let us consider constraints (3.37) for given S, I′ and i ∈ I′. Suppose that S′ ⊆ S is

such that r(S \S′, I′) = r(S, I′) and r(S \S′, I′ \{i}) = r(S, I′ \{i}). Then, the following

inequality is valid for the CLRP and dominates (3.37):

x((I \ I′)∪S : S)+2y(I \ I′ : S\S′)≥ 2r(S, I′ \{i})+2zi(r(S, I′)− r(S, I′ \{i})). (3.51)

As this inequality dominates (3.37), we will refer to it as the ESFCI.

Proposition 3.3.4. Constraints (3.51) are valid for the CLRP.
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Just as with the SFCI, for the three-index case these inequalities can be strengthened

to the following set of inequalities

xI\I′(δ (S))+2y(I \ I′ : S\S′)≥ 2r(S, I′ \{i})+2zi(r(S, I′)− r(S, I′ \{i})). (3.52)

Remark Constraints SFCI and ESFCI do not dominate each other. However, in prac-

tice, we have verified that for fractional values of the z variables the ESFCI have a more

significant impact on the lower bound than the SFCI. Conversely, when location vari-

ables are fixed to either 0 or 1, constraints SFCI start playing an important role. Because

of that, at every node of the branching tree we separate constraints ESFCI for facilities i

such that 0 < zi ≤ 0.85 and constraints SFCI for every i such that 0.75 < zi ≤ 1. The role

of every cut is complementary: constraints ESFCI help to stregthen the lower bound and

hopefully to prune nodes close to the root, while constraints SFCI start dominating the

ESFCI deeper in the tree.

3.3.2.6 Location-routing comb inequalities

Comb inequalities were developed by Chvátal [33] for the symmetric traveling sales-

man problem (STSP) and have since then received considerable attention in the literature

[68, 90, 101]. In particular, stronger versions have been proposed for the CVRP that take

advantage of the vehicle capacities. In what follows we develop a new family of inequal-

ities that are shown to be valid for the CLRP and include some of the earlier inequalities

as special cases. Let sets H ⊆ V (the handle), Π = (T 1
j )

s1
j=1 ∪ (T 2

j )
s2
j=1 ⊆P(V ) (the

teeth) be such that

i. |H ∩T | ≥ 1 T ∈Π

ii. |T \H| ≥ 1 T ∈Π

iii. |T ∩U |= 0 T,U ∈Π

iv. |H ∩ I|= 0
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v. |T 1
j ∩ I| ≥ 1 1≤ j ≤ s1

vi. |T 2
j ∩ I|= 0 1≤ j ≤ s2

For notational simplicity, for every k, j we denote Sk
j = T k

j ∩ J. If k = 1, we also de-

note I j = T 1
j ∩ I. Let s′1 < s1 and suppose that for each j ∈ {1, . . . ,s′1} we also distinguish

a special facility i j ∈ I j that we call effective. For every set U ⊆V = I∪ J let us denote

x(E(U)) =

x(E(U)) if U ∩ I = /0

x(E(U \ I))+ x(U ∩ I : U \ I)+2y(U ∩ I : U \ I) if U ∩ I 6= /0.

Let αx = x(E(H))+∑
2
k=1 ∑

sk
j=1 x(E(T k

j )). Define the following constants:

r̂(H,T k
j ) =


r(S1

j , I j \{i j})+ r(S1
j \H, I j \{i j})+ r(S1

j ∩H) if k = 1,1≤ j ≤ s′1

r(S1
j , I j)+ r(S1

j \H, I j)+ r(S1
j ∩H) if k = 1,s′1 < j ≤ s1

r(S2
j)+ r(S2

j \H)+ r(S2
j ∩H) if k = 2,1≤ j ≤ s2

Λ(H,T 1
j ) = r(S1

j , I j\{i j})+r(S1
j\H, I j\{i j})−r(S1

j , I j)−r(S1
j\H, I j) 1≤ j ≤ s1

r̂(H,Π) = ∑
k=1,2

∑
1≤ j≤sk

r̂(H,T k
j ).

If Λ(H,T 1
j ) is even for every 1≤ j ≤ s′1 and r̂(H,Π) is odd, the associated location-

routing comb inequality (LRCOMB) is

αx− 1
2

[
∑

1≤ j≤s1

(
x(I j : J)+2y(I j : J)

)
+ ∑

1≤ j≤s′1

zi jΛ(H,T 1
j )
]

≤ |H|+
2

∑
k=1

t

∑
j=1
|Sk

j|−
⌈1

2 r̂(H,Π)
⌉
. (3.53)

Proposition 3.3.5. The location-routing comb inequality (3.53) is valid for the CLRP.

Remark 1. For the sake of clarity, we have assumed that s1,s2 > 0. Indeed, it is possible

to omit this assumption and obtain the associated LRCOMB as a consequence.
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Remark 2. The interest of considering s′1 < s1 relies on the fact that we can relax the

condition Λ(H,T 1
j ) is even for s′1 < j≤ s1. This case becomes specially interesting when

z j ∼ 1 for s′1 < j≤ s1 because in such a case the strength of the comb inequality remains

almost the same.

3.3.2.7 Location-routing generalized large multistar inequalities

We now introduce a new class of location-routing generalized large multistar in-

equalities that are valid for the two-index vehicle-flow formulation and that cannot be

derived from inequalities (3.34). For given I′ ⊂ I,S ⊆ J, and j /∈ S, define η(I′,S, j) =

x(S : j)+1/2x(I′ : { j})+ y(I′ : { j}). The following Location-routing generalized large

multistar inequality (LRGLM) is valid for the two-index vehicle-flow formulation:

x((I \ I′)∪S : S)+2y(I \ I′ : S)≥ 2
Q

(
d(S)−b(I′)+ ∑

j/∈S
d jη(I′,S, j)

)
. (3.54)

The validity of constraints (3.54) is a consequence of the following lemma and propo-

sition.

Lemma 3.3.6. Let I′ ⊂ I, S ⊆ J. Let WI′ be the set of customers that are served from

facilities in I′, and T ⊆ S∩WI′ . Then x(E(S))+1/2x(I′ : S)+ y(I′ : S) ≤ |S|− 1
Q(d(S∪

T )−b(I′)).

Proposition 3.3.7. Constraint (3.54) is valid for the CLRP.

Remark A stronger valid inequality can be obtained by replacing the right-hand side of

constraint (3.54) by

2
Q

(
d(S)−∑

i∈I′
bizi + ∑

j/∈S
d jη(I′,S, j)

)
. (3.55)

3.3.2.8 Lifted cover inequalities

Lifted cover inequalities (LCI) can be useful when facilities have heterogeneous ca-

pacities. In such a case, the valid knapsack inequality ∑i∈I bizi ≥ d(J) can be used in
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order to derive LCI. For details on LCI we refer to Gu et al. [70].

3.4 Separation Algorithms

In this section we describe the separation algorithms that we use to identify violated

valid inequalities from the families introduced in Section 3.3. We begin by introducing

a general cut lifting heuristic that takes advantage of the particular underlying structure

of some inequalities, decomposing the separation problem into two easier subproblems

that are solved sequentially. Then, we present the different separation algorithms for

the separation of the inequalities presented in the paper. They include some exact sep-

aration algorithms based on maximum-flow computations as well as connected compo-

nents or shrinking heuristics. We make use of the CONCORDE Library [34] to solve

the maximum-flow problems as well as the connected components problems, and the

COMBO algorithm [102] for solving 0-1 knapsack problems.

3.4.1 A cut lifting heuristic

In this section we describe a general separation algorithm that takes advantage of

the special structure of some families of valid inequalities. Let us consider a polytope

X = {x ∈Rn,Ax≤ b} and denote by Y = conv(X ∩Zn) the convex hull of the integer

points of X . Given a function f : Rn → R and a scalar g ∈ R, we say that the tuple

( f ,g) is a valid inequality for Y if f (x) ≤ g for every x ∈ Y . Given two functions

f : Rn→R and h : Rn→R let us denote by [ f +h] the function [ f +h](x) = f (x)+h(x).

Suppose that we are given a family of valid inequalities for Y , F = {([α j +β jk],γ j) :

j = 1, . . .J ,k = 1, . . . ,K j} with β jk(·) ≥ 0 for all j,k. Suppose that the family F1 =

{(α j,γ j) : j = 1, . . . ,J } is easy to separate, in the sense that for any ε > 0 and x ∈X

the decision problem

∃ j ∈ {1, . . . ,J } such that α j(x)> γ j− ε (P1)
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is easy to solve. Suppose that for given j ∈ {1, . . . ,J } and x ∈X , the problem

max
k

f (k) = β jk(x)

s.t. k ∈K j

(P2)

is easy to solve also, or that a good lower bound can be computed efficiently. Thus,

given x ∈X , the following heuristic aims to find a valid cut ([α j +β jk],γ j) ∈F that is

violated by x:

i. Fix ε > 0 and use separation procedures for problem (P1) in order to find one or

more j’s such that α j(x)> γ j− ε . We say that we find an ε-F1 cut.

ii. For every j found in (i) solve problem (P2), obtaining k. If α j(x)+ β jk(x) > γ j

then a violated inequality has been identified.

This procedure, although not exact, decomposes the problem into two easier sub-

problems and, as we will see later, can take advantage of known separation algorithms

for related families of inequalities. We will see that problem (P2) usually corresponds to

solving a 0-1 knapsack problem. This problem is weakly N P-hard and efficient exact

algorithms have been proposed. We have chosen to use the COMBO algorithm [102]

that stands as the state-of-the-art solver for the 0-1 knapsack problem.

3.4.2 CVRP Inequalities

For the CVRP inequalities we make use of the separation algorithms developed by

Lysgaard et al. [101] and which are available at the author’s website [100].

3.4.3 y-Capacity constraints

We use the cut lifting heuristic described in Section 3.4.1 to exploit the well-known

separation algorithms for the capacity constraints of the CVRP. In fact, problem (P1)

corresponds to the separation of the CC. Suppose that a set S has been found that solves

the ε-CC separation problem. Problem (P2) then aims to find a subset S′ ⊆ S such that
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the quantity y(I : S′) is maximum while respecting the constraint r(S \ S′) = r(S). This

problem can be written as the following 0-1 knapsack problem:

max
µ

∑
j∈S

µ jy(I : j)

s.t. ∑
j∈S

d jµ j ≤

d(S)−Q(r(S)−1)−1 if d(S) 6≡ 0 (mod Q)

0 otherwise

µ ∈ {0,1}|S|.

In our implementation, we have modified the code of Lysgaard et al. [101] to find

ε-CC. The 0-1 knapsack problem is solved to optimality using the COMBO algorithm.

3.4.4 Strengthened facility capacity inequalities

We introduce separation algorithms for the separation of the SFCI (3.49). Note that

as for the three-index case the inequalities (3.50) dominate (3.49), so the separation

algorithms for the latter can in fact be safely used as heuristics. The separation for SFCI

constraints (3.49) is done in three stages. First, we obtain candidate sets S and facilities

i ∈ I by solving the separation problem for the particular case of |I′| = 1, |S′| = 0. We

refer to these specific constraints as the Basic FCI (BFCI). Note that these constraints

are enough to ensure the feasibility of solutions. For each candidate sets S and I′ =

{i}, we use a greedy heuristic to enlarge the set I′, and at every iteration in which I′

is enlarged, we compute the set S′ ⊂ S that maximizes the quantity y(I′,S′) and such

that r(S, I′) = r(S \ S′, I′). This last problem corresponds to a 0-1 knapsack problem

with item sizes (d j) j∈S, weights (y(I′,{ j})) j∈S and knapsack capacity of either d(S)−
b(I′)−Q(r(S, I′)− 1)− 1 if d(S)− b(I′) 6= 0 (mod Q) or 0 otherwise. This procedure

is an application of the cut lifting heuristic described in the subsection above, in which

the subproblem corresponds to the described knapsack problem. We now describe the

separation routine for generating the candidate sets S and {i}. We have implemented

a safe shrinking routine, a connected component heuristic and an exact routine for the



43

fractional case based on a series of min-cut computations, all of which are applied in the

following order:

i. Start applying the shrinking routine. Every time that two customers are chosen for

shrinking, the shrinking heuristic is applied to these customers.

ii. If the shrinking process is completed and the shrinking routine is not able to find

a violated BFCI we run a connected component heuristic over the connected com-

ponents of the shrunk graph.

iii. If none of the above procedures is able to find a violated BFCI we solve a polyno-

mial number of min-cut problems over the shrunk graph.

We now present in detail the safe shrinking routine as well as each of the heuristic

procedures mentioned above.

3.4.4.1 A safe shrinking routine

In what follows we denote by ω∗,φ∗ the weight functions obtained from x∗ and

y∗, respectively, after successive contractions, and we keep x∗,y∗ for the weights in the

original unshrunk graph. We denote by d∗ the aggregated demands of super-customers

as well, whose set we denote by JS. A super-customer comprises the set of all customers

that have been shrunk to the same super-node. We will show that it is safe to shrink two

customers h, j ∈ JS whenever

i. d∗h +d∗j ≤ Q and

ii. [ω∗h j ≥ 1] or [φ∗ih ≥ 1 and φ∗i j ≥ 1].

Let us start by fixing a facility i. We will first show that for the separation of a BFCI

using facility i it is safe to shrink any pair of nodes h and j in JS satisfying only condition

ii. If this is the case and [φ∗ih ≥ 1 and φ∗i j ≥ 1], the new weights for the shrunk node {h, j}
are

– ω∗{h, j}v = 0 for all v ∈ I∪ (JS \{h, j})

– φ∗{h, j}v =

1 if v = i

0 otherwise
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Otherwise (i.e., if ω∗h j ≥ 1), the new weights are recalculated using the usual rule, as

follows:

– ω∗{h, j}v = ω∗hv +ω∗jv for all v ∈ I∪ (JS \{h, j}).

Remark For every super-customer h in the shrunk graph it is true that ω∗(δ (h)) +

2φ∗(I : h) = 2.

Lemma 3.4.1. For fixed i ∈ I, it is safe to shrink nodes h, j ∈ JS such that ω∗h j ≥ 1 or

[φ∗ih ≥ 1 and φ∗i j ≥ 1].

Remark If φ∗ih = 1 and φ∗i j = 1 it is not true that the shrinking of h and j is safe when

considering a BFCI using a different facility, say l. In fact, in such a case, the last

inequality in the proof above will be σl(T )−σl(S) ≤ 2− 2ω∗h j− (ω∗lh + 2φ∗lh) which is

equal to 2. The next lemma proves, however, that in this case and whenever d∗j ≤ Q and

d∗h ≤ Q, h and j can be safely omitted from any BFCI containing facility l.

Lemma 3.4.2. Let h ∈ JS be such that φ∗ih = 1 and d∗h ≤Q. It is safe to omit node h from

any BFCI containing a facility l 6= i.

The following corollary follows as a consequence of Lemmas 3.4.1 and 3.4.2.

Corollary 3.4.3. It is safe to shrink customers h, j such that

i. d∗h +d∗j ≤ Q and

ii. ω∗h j ≥ 1 or φ∗ih = φ∗i j = 1 for some i ∈ I.

3.4.4.2 Shrinking heuristic

During the execution of the shrinking routine, we can check at every iteration of the

algorithm if two given super-customers h, j ∈ JS violate a BFCI, i.e., if ω∗h j +
1
2ω∗(i :

{h, j})+φ∗(i : {h, j}) > 2− r({h, j},{i}) for some i ∈ I. If this is the case, a violated

inequality is obtained. Otherwise, we continue shrinking.
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3.4.4.3 Connected component heuristic

Given a family of weights (x′e)e∈E , let Gx′ = (V,Ex′) be the graph induced by the

edges of E with strictly positive weights x′e. The connected component heuristic works

under the principle that if a violated BFCI exists associated to a facility i, then there is

one contained in one of the connected components of the graph Gx′ (see Lemma 3.4.4

below), with x′ defined as follows:

x′e =

x∗e +2y∗e if e ∈ δ (I)

x∗e otherwise.
(3.56)

Lemma 3.4.4. Let i ∈ I be a facility, and let S⊆ J be a disconnected (with respect to x′)

customer subset. Without loss of generality suppose that S1,S2 is a partition of S such

that both S1 and S2 satisfy the CC constraints (3.2). Then, if (i,S) defines a violated

BFCI, (i,S1) or (i,S2) define another BFCI cut with a stronger violation as measured

by the difference between the right-hand side and left-hand side of constraint (3.49)

evaluated in vectors (x∗,y∗).

The description of the algorithm is as follows. We start by looking at the con-

nected components of the graph Gx′ (we make sure that connected components of Gx′

will satisfy constraints CC during their separation). Let Sk, Ik be the customers and fa-

cilities belonging to the kth connected component, for k = 1, . . . ,Γ. Then, for every

k and for every i ∈ Ik we set Si
k = Sk \ {h : y∗lh = 1, l 6= i}, and we iteratively check

whether the pair (i,Si
k) violates a BFCI or not. If it does, we have identified a vi-

olated inequality. Otherwise we choose j ∈ Si
k such that the quantity x∗(Si

k \ { j} :

j)+ 1/2x∗i j + y∗i j + r(Si
k,{i})− r(Si

k \ { j},{i}) is minimum and we remove it from Si
k,

repeating this procedure as long as we do not find a violated cut and Si
k 6= /0.

3.4.4.4 Exact separation of fractional BFCI’s

The problem of finding a violated fractional BFCI can be formulated as the solution

of |I||J| minimum {s, t}-cut problems as follows: fix some i ∈ I and j ∈ J. Consider the
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graph G′(V ′,A′) produced from G(V,A) after deleting node i and contracting nodes in

I \{i} in a single super node s. Define the weight of the new edges {h,k} ∈ A′,h < k as

x′hk =

∑l∈I\{i}(x∗lk +2y∗lk)−2dk/Q if h = s

x∗hk if h 6= s.

Although there are negative weight edges, the problem of finding a minimum {s, j}-
cut can still be solved in polynomial time as pointed out by McCormick et al. [103].

Obviously there exists an s− j cut in the modified graph of capacity smaller than−2bi/Q

for some i ∈ I, j ∈ J iff there exists a violated fractional BFCI.

3.4.5 Effective strengthened facility capacity inequalities

Analougously to the SFCI, note that for the three-index case, the separation proce-

dures for constraints (3.51) can be safely used as heuristics for separating constraints

(3.52). The separation of the ESFCI (3.51) is done in a completely analogous way to

the SFCI. In a first stage, we get candidate sets S and I′ = {i} by solving the separa-

tion algorithms for the EBFCI, that correspond to the particular case of ESFCI when

|I′| = 1, |S′| = 0. For every candidate pair S, I′ = {i}, we enlarge the set I′ in a greedy

way and after every extension we compute the set S′ that maximizes the quantity y(I′,S′)

and such that r(S, I′) = r(S \ S′, I′),r(S, I′ \ {i}) = r(S \ S′, I′ \ {i}). Again, this prob-

lem corresponds to a 0-1 knapsack problem and is a direct application of the cut lifting

heuristic. The separation algorithms for the EBFCI are completely analogous to those

used for the BFCI and for the sake of brevity we will omit the remaining details.

Remark Note that the safe shrinking result for the BFCI is also safe for the separation

of the EBFCI. In fact, one can take advantage of this observation and shrink the graph

just once.
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3.4.6 Co-circuit constraints

We have implemented two heuristic procedures and an exact algorithm based on the

computation of a minimum-cut tree. Note that for a given set S, the computation of the

set F such that the left-hand side of constraint (3.38) is minimum can be done in linear

time by defining F = {e ∈ δ (S) : xe ≤ 1/2}. If |F | is even, then we either add to or re-

move from F the edge in δ (S) that minimizes the increase of the left-hand side of (3.38).

The first heuristics checks, for every customer j ∈ S if the corresponding co-circuit con-

straint is violated for S = { j}. If we de not find any cut, we compute the blocks (2-

connected components) of the graph G1/2 induced by the edges {e ∈ E : ε ≤ xe ≤ 1−ε}
and whose weights are taken as we = min{xe,1−xe}. For this, we have taken ε = 10−5.

If this procedure also fails, then we solve the separation of the blossom inequalities by

computing a minimum-cut tree on graph G1/2 using the Gomory-Hu algorithm [67]. We

take as candidate handles the cuts induced by the edges of this tree. The first heuristic

and the exact separation are done as suggested by Belenguer et al. [19], while the idea

of considering the blocks of the graph as candidate handles has been successfully im-

plemented into the separation of blossom inequalities in the CONCORDE solver for the

TSP [5]. The separation of the DCoCC is done in a completely analogous way to the

CoCC and, for the sake of brevity, we omit the details.

3.4.7 Facility degree constraints

Constraints (3.39) are not dynamically added but rather included at the beginning of

the algorithm for the set JQ built as follows. Let JQ = /0 and let V be the set containing

the customers in J sorted by non-decreasing demands. Pick the first customer v ∈V and

check if dv + d j ≤ Q for all j ∈ JQ. If that is the case, then add v to JQ, remove v from

V and continue. If not, then stop. This way of constructing the set JQ generalizes the

approach of Belenguer et al. [19] in which JQ is restricted to contain customers whose

demands are ≤ Q/2 by adding the possibility of adding one more customer.

For the separation of constraints (3.40) (respectively (3.48)) we have implemented

two heuristics. First, we fix i ∈ I and set S = /0. Iteratively we enlarge set S by adding
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the customer j /∈ S that maximizes the quantity 2y∗i j + x∗i j + x∗(S : j) (respectively 2y∗i j +

xi∗
i j +xi∗(S : j)−ui j). The algorithm terminates if either d(S)≥Q or a violated constraint

(3.40) (respectively (3.48)) has been detected. If this fails, we check the violation for

every y-CC generated so far during the algorithm such that d(S) ≤ Q, just as done by

Belenguer et al. [19].

3.4.8 Path constraints

To separate constraints (3.6) we first shrink the graph using a safe shrinking routine.

Once the graph has been completely shrunk we find (if one exists) a violated constraint

(3.6) using a greedy search heuristic or, in case the first fails, a series of min-cut compu-

tations, which yields an exact separation algorithm.

3.4.8.1 A safe shrinking routine

Using the same notation as before, let JS be the customer set containig the shrunk

customers, and let ω∗,φ∗ be the edge weights in the shrunk graph. The following propo-

sition gives a safe condition for shrinking customer nodes during the separation of con-

straints (3.6).

Proposition 3.4.5. For the path constraints (3.6) it is safe to shrink customers u,v ∈ JS

such that ω∗uv ≥ 1 and ω∗(I : u) = ω∗(I : v) = 0.

3.4.8.2 Greedy search heuristic

Because solving a max-flow problem can be time-consuming, we have implemented

a greedy search heuristic that aims to find all the chains of length two or three in the

shrunk graph. We simply check for every pair or triplet of customers (in the shrunk

graph) whether they define or not a violated PC.

3.4.8.3 Exact separation

The problem of finding a violated inequality (3.6) can be solved in polynomial time

[19] in the following way. For fixed h, j ∈ J contract in the usual way (i.e., by recalculat-
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ing the edge weights properly) in the underlying graph G(V,E) nodes in I in a super-node

s and nodes h, j in a super-node t. Let us call J′ = (J−{h, j})∪{t}. In this new graph,

let us consider the following weight function:

x′uv =



x∗(I : v) u = s,v ∈ J′ \{t}

x∗(I : {h, j}) u = s,v = t

x∗uv u,v ∈ J′ \{t}

x∗uh + x∗u j u ∈ J′ \{t},v = t.

Let us find a cut of minimum weight between s and t in this graph. Let S be the side

of this minimum cut that contains t. Then, define I1 = /0. For every i ∈ I, if x∗ih > x∗i j then

make I1← I1∪{i}. By construction, sets S, I1 will violate constraint (3.6) iff they define

a violated PC. As only a polynomial number of maximum-flow problems are solved, the

method remains polynomial in |I∪ J|.

3.4.9 Location-routing comb inequalities

We present a tabu search algorithm for separating a subset of constraints LRCOMB

in which |Tj ∩ I| ∈ {0,1} for all j. Given a customer set H and t teeth Π = (Tj)
t
j=1 we

call them a pseudo-comb if they satisfy conditions (iii)-(iv) of the definition of a comb,

and |Tj ∩ I| ≤ 1 for all 1 ≤ j ≤ t. Our separation algorithm proceeds in three stages:

i) We search for ε-strengthened comb inequalities (SCI), getting candidate handles and

teeth; ii) We use a greedy heuristic that breaks intersections (teeth can intersect in a SCI)

by deleting elements that appear in two or more teeth from those that make the violation

the greatest. If all the depots appear in a tooth, we delete all these depots except the one

with the greatest violation. This process is repeated as many times as needed in order to

obtain a pseudo-comb; iii) For every candidate pseudo-comb found after i) and ii), we

proceed with the following tabu search metaheuristic.

Let us consider a pseudo-comb C = (H,Π = (Tj)
t
j=1). Define v(C) equal to the

difference between the left-hand side of (3.53) and the right-hand side of (3.53). If C is
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a valid comb, then v(C) represents the violation of the comb. Let us define the pseudo-

violation µ(C) equal to

µ(C) = v(C)−
t

∑
j=1

δ (H ∩Tj = /0)−
t

∑
j=1

δ (Tj \H = /0)

−δ (r̂(H,Π)≡2 0)−
t

∑
j=1

δ (Λ(H,Tj)≡2 1).

The idea of considering the pseudo-violation instead of just the violation is justified

by the fact that our procedure passes through pseudo-combs. Let T be the tabu list.

A member l of T has two components, say n(l) equal to a node and pos(l) equal to

a position relative to the comb. Here pos(l) can take four values: H \Π,H ∩Π,Π \H

and (H,Π), where (H,Π) is the set containing all nodes not in the pseudo-comb (H,Π).

Constructed in this way, the goal of the list T is to forbid the movement of a node n(l)

to position pos(l) during a certain number of iterations.

Given a pseudo-comb C = (H,Π = (Tj)
t
j=1) we consider several simple neighbor-

hoods, all of which can be evaluated very quickly.

N1 Pick a customer j from H \Π and remove it from C. Add ( j,H \Π) to T.

N2 Pick a customer j from H ∩Π and remove it from H. Add ( j,H ∩Π) to T.

N3 Pick a customer j from H ∩Π and remove it from Π. Add ( j,H ∩Π) to T.

N4 Pick a customer j from Π\H and remove it from C. Add ( j,Π\H) to T.

N5 Pick a facility i from Π\H and remove it from C. Add (i,Π\H) to T.

N6 Pick a customer j from C and add it to H \Π. Add ( j,C) to T.

N7 Pick a customer j from Π\H and add it to H. Add ( j,Π\H) to T.

N8 Pick a customer j from H \Π and add it to Π. Add ( j,H \Π) to T.

N9 Pick a customer j from C and add it to Π\H. Add ( j,C) to T.

N10 Pick a facility i from C and add it to Π\H. Add (i,C) to T.

The neighborhoods are sorted in such a way that removal and insertion movements

are alternated. If, after inspecting some neighborhood, we get a pseudo-violation of
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value greater than the incumbent, we update the incumbent and restart. Otherwise, we

continue with the next neighborhood. We have found convenient to start the next itera-

tion inspecting the first neighborhood not inspected during the last iteration. If we finish

inspecting all the neighborhoods without finding any pseudo-comb with value greater

than the incumbent, we update it with the best movement found and restart. During the

process we do not consider movements of nodes to a tabu position, thus decreasing the

probability of cycling. Note also that for neighborhoods N5 and N10, the contribution to

the pseudo-violation depends on whether we are in the case 1≤ j ≤ s1 or s1 < j ≤ s2 in

the definition of a comb. We have chosen to make this distinction by simply considering

the value of zi in the current iteration. In fact, if zi < 0.75 we consider the first case,

otherwise the second. The algorithm finishes when we have found a valid comb with

positive pseudo-violation, or when a maximum number of iterations has been performed

without success. In our experiments we have noticed that most combs were found during

the first 30 iterations. We have thus set the maximum number of iterations to 300 for the

root node and 50 for the remaining nodes.

3.4.10 y-Generalized large multistar inequalities

The separation problem for the y-GLM (3.26) can be done in polynomial time by

solving a maximum {s, t}-flow problem in the following graph G′ = (V ′,E ′). Let s and t

be two dummy nodes, and let V ′= J∪{s, t}, E ′=E(J)∪{{s, j} : j∈ J}∪{{ j, t} : j∈ J}.
With every edge e ∈ E ′ we associate a capacity x′e defined by

x′e =


x∗(I : { j})+2d j

Q

(
y∗(I : { j})−1

)
e = {s, j}, j ∈ J

0 e = { j, t}, j ∈ J

x∗e
(

1−2d j
Q

)
e = {h, j},h, j ∈ J.

(3.57)

It is easy to check that a maximum {s, t}-flow exists in this graph with negative

value iff there is a violated y-GLM. However, note that while maximum-flow algorithms

assume positive edge capacities, this may not happen. Indeed, if 2d j ≤ Q for all j ∈
J then the usual weight transformation on the edges joined to nodes s or t suffices.
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Suppose, however, that for some j ∈ J, 2d j > Q. The following transformation proposed

by Blasum and Hochstättler [22] can be applied in order to get a non-negative weight

digraph whose minimum-cut coincides with the one we are looking for. Define for every

j ∈ J the quantities d j = min{Q
2 ,d j},d j = d j−d j. Let us consider the following weight

function:

x′e =


x∗(I : { j})+2d j

Q

(
y∗(I : { j})−1

)
e = {s, j}, j ∈ J

−2∑v∈J

(
dv
Q −

d j
Q

)
x∗jv e = { j, t}, j ∈ J

x∗h j

(
1−2

(
dh
Q +

d j
Q

))
e = {h, j},h, j ∈ J.

(3.58)

It can be checked that a maximum {s, t}-flow in this modified graph is also a max-

imum flow in the original graph, and thus the separation algorithm of the y-GLM is

polynomially solvable.

3.4.11 y-Location-routing generalized large multistar inequalities

The separation of constraints (3.34) is done in two stages. In the first stage, we sep-

arate what we call the Basic y-LRGLM (B-y-LRGLM) that corresponds to a y-LRGLM

in the particular case of |H|= 1. For every H = {i} ⊂ I we run an exact polynomial-time

algorithm based on a maximum-flow computation, obtaining a candidate set S. Then, we

use a greedy algorithm for enlarging the set H by inserting at each iteration the facility

that makes the violation the greatest. For the separation of the B-y-LRGLM let us fix a

facility i ∈ I, and let us consider two dummy nodes s, t. Let us consider the following

graph Gi = (Vi,Ei), with Vi = J ∪{s, t}, Ei = δ (J)∪ ({s} : J)∪ (J : {t})), weighted as

follows:

x′e =


xI\{i}(I : j)+ 2d j

Q

(
∑l∈I\{i}(yl j−ul j)

)
e = {s, j}, j ∈ J

0 e = { j, t}, j ∈ J

xI\{i}
h j

(
1− 2d j

Q

)
h, j ∈ J.

(3.59)

Again, if the weights on the edges are negative, we apply the same transformation as
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for the separation of the y-GLM. It is easy to check that a violated B-y-LRGLM exists

iff the minimum {s, t}-cut in this graph is negative.

3.4.12 Location-routing generalized large multistar inequalities

We have implemented the following heuristic procedure for the separation of the

LRGLM (3.54) strengthened using as right-hand side the expression (3.55). First, we

use an exact algorithm for finding a ε-LRGLM in the particular case in which |I′| = 1.

We call these inequalities Basic LRGLM (B-LRGLM). For every pair of sets S and

I′ = {i} found by this procedure, we apply a greedy heuristic that iteratively enlarges I′

and checks for the violation of the corresponding LRGLM. The exact procedure used

for the separation of the B-LRGLM is as follows.

Let i ∈ I, and let us consider a digraph whose vertex set is J ∪{i}∪{s}, where s is

the node obtained by the contraction of facilities in I \ {i}. The edge set is determined

by the non-zero weights in the arcs, given by

x′uv =


−d j

Q (x∗iu +2y∗iu) u ∈ J,v = i

x∗(I \{i} : u)+2y∗(I \{i} : u)− 2du
Q u = s,v ∈ J

x∗uv

(
1−2dv

Q

)
u,v ∈ J.

It is easy to check that a violated LRGLM exists iff a minimum {s, i}-cut in this

digraph has value less than −2bi
Q z∗i . In the case of negative weights, we apply the same

procedure already described for the separation of the y-GLM. Thus, the problem of find-

ing a LRGLM can be solved in polynomial time by computing a minimum {s, i}-cut in

this graph.

3.4.13 Lifted cover inequalities

We add LCI only at the root node. We use the algorithm of Gu et al. [70] for finding

violated LCI. For details on the algorithm we refer to Gu et al. [70].
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3.5 The exact algorithms

We test the models, separation routines and valid inequalities introduced in this paper

by developing four branch-and-cut algorithms. The first, named VFF2, is a branch-and-

cut over the two-index vehicle-flow formulation (VF2) augmented by the valid inequali-

ties introduced in this paper except those that are specific to the three-index formulations.

The second algorithm, named VFF3, is a branch-and-cut on the three-index vehicle-flow

formulation augmented by all the valid inequalities. The third algorithm, named CFF2,

is branch-and-cut algorithm over the two-index two-commodity flow formulation (CF2)

augmented by all the inequalities introduced in this paper except those that are specific

to the three-index formulations and the y-GLM. The fourth algorithm, named CFF3, is a

branch-and-cut algorithm over the three-index two-commodity flow formulation (CF3)

augmented by all the inequalities except for y-GLM, LRGLM and y-LRGLM. For the

two-commodity formulations, we also replace vehicle-flow variables x with their corre-

sponding commodity-flow variables w using identities (3.22) and (3.30) and by adding

(as cutting planes) inequalities (3.44) and (3.46) for the two-index and three-index for-

mulations commodity-flow formulations, respectively. For the vehicle-flow formula-

tions, we also add inequalities (3.43) and (3.45) dynamically as cutting planes.

3.5.1 The separation strategies

The separation strategies for the different formulations depend on two criteria: strength

of the inequalities and need for feasibility. Inequalities that are needed to impose fea-

sibility of integer solutions are thus separated first, while the rest are added as cutting

planes, and among these two families the priority is given to inequalities that, in our

experiments, have shown a bigger impact on the lower bounds. The exception are in-

equalities FAI that are separated immediately after the LCI. After some preliminary tests

we have found the convenience of separating these inequalities before any other family

of cuts. In addition, inequalities ESFCI and SFCI that seem to have an important im-

pact in formulations VFF3, CFF2 and CFF3. Although they are not needed to impose

feasibility, they are also separated first. Taking these observations into account, we have
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decided to divide the inequalities into two groups: those that are statically separated

(i.e., separated in every node of the branching tree) and those for which we dynamically

decide whether to separate them or not in a certain node of the branching tree. The cri-

teria for selecting these dynamic cuts are explained later. In Table 3.I we describe the

two groups of inequalities as well as their separation order for each of the four different

formulations considered in our study.

Form. Static Cuts Dynamic Cuts

VFF2
FAI (3.43), y-CC, ESFCI (3.51), LCI, FDC (3.40), CoCC, FrCI, y-GLM,
SFCI (3.49), SPC LRGLM, SCI, LRCOMB, MSI, HYP

VFF3
FAI (3.45), y-CC, ESFCI (3.52), LCI, FDC (3.40) and (3.48),
SFCI (3.50), y-GLM, CoCC, DCoCC, SPC, FrCI,
y-LRGLM, LRGLM SCI, LRCOMB, MSI, HYP

CFF2
FAI (3.44), y-CC, ESFCI (3.51), LCI, FDC (3.40), CoCC, FrCI, LRGLM
SFCI (3.49), SPC SCI, LRCOMB, MSI, HYP

CFF3
FAI (3.46), y-CC, LCI, CoCC, DCoCC, FDC (3.40) and (3.48),
ESFCI (3.52), SFCI (3.50) SPC, FrCI, SCI, LRCOMB, MSI, HYP

Table 3.I: Separation order of valid inequalities

Note that in order to avoid errors due to floating point arithmetic, a certain tolerance

ε > 0 must be imposed for checking the violation of a certain cut. Moreover, if ε is

too small, many cuts whose violations are very close to zero will be added without much

impact on the lower bound. After a series of experiments, we have decided to use ε = 0.1

for all of the cuts except for hypotour inequalities and multistar inequalities for which

the tolerance was set to ε = 0.4. At the root node, all families of cuts are separated.

Moreover, all separation algorithms are used for each family. More specifically, for the

FrCI, the tree size is set to a maximum of 10,000 nodes, as for the LRCOMB the number

of iterations of the Tabu Search is set to 300.

For the cutting strategy in nodes other than the root, we use the following approach.

For each family of dynamic cuts (see Table 3.I), say for family C , we let n(C ) be the

number of times that a cut of family C has been found to be violated and thus added to

the problem. We keep track of this quantity in the different branches of the tree and at

certain depths we check whether C has been useful in the current branch. If n(C ) = 0
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then the family C is not separated anymore during the current branch. For the other

cuts, say those such that n(C )> 0 the counter is reset to 0. After some testing we have

decided to perform this check for the first time at depth 10 and then for multiples of 5.

In practice, we have verified that no dynamic cuts are present after depth 25. Note also

that the tree size in the separation of the inequalities FrCI is lowered to 200 nodes, while

the maximum number of iterations of the Tabu Search algorithm for the separation of

LRCOMB is lowered to 50.

Regarding the setting of the cut lifting heuristic described in Section 3.4.1, we have

performed a series of tests in order to choose the value of ε that fits best with every cut

family. The values that we have tested are ε equal to 0, 0.25, 0.50 and 1.0. For y-CC we

have decided to set ε = 0.25 at the root node and ε = 0 for the remaining nodes (recall

that cuts are not added unless they are violated by more than 0.1). For the SFCI and

ESFCI we have set ε = 0.25 during the whole computation.

3.5.2 The branching strategy

We use the following branching strategy. We first branch on location variables z. If

no variable z is fractional, we branch on cutsets. For this, we use and idea proposed in

Belenguer et al. [19]: during the root relaxation, each y-CC cut is added as an equality

constraint by adding an extra slack variable to the problem. We then let CPLEX branch

on these slack variables. For the three-index formulations, we then branch on the as-

signment variables u. Finally, we branch on the vehicle-flow variables y or x (or in their

equivalent expressions using variables w in the commodity-flow formulations). We have

observed that while strong branching produces the smallest branching trees, the compu-

tational effort is too high and for hard instances it is not worthwhile. On the other hand,

branching on the most fractional variables leads to much bigger branching trees. Thus,

we let CPLEX branch based on pseudo costs, which we found to give the best balance

between lower bound quality and CPU time.
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3.6 Computational experience

In this section we describe the implementation of the algorithms as well as the results

obtained on a series of instances from the litterature.

The algorithms have been coded in C++ using the Concert Technology framework of

CPLEX 12.2. Tests were run on an Intel Xeon E5462, 3.0 Ghz processor with 16GB of

memory under the Linux Operating System kernel 2.6. In order to obtain results purely

related to the strength of the formulations and the cuts used in this paper, other families

of cuts added by CPLEX (such as MIR, knapsack cover, GUB, clique, etc.) have been

disabled. Finally, the node selection strategy has been set to best-first search.

We have run our algorithm on four datasets taken from the literature. The instances

descriptions are as follows:

i. Set S1 contains 17 instances adapted by Barreto [18] from other problems in the

literaure. Only three instances have facilities with limited capacities.

ii. Set S2 contains 24 randomly generated instances from the experiments of Be-

lenguer et al. [19]. All of the instances have facilities with limited capacities.

Customer loads are taken randomly in the interval [11,20] and capacities are set in

such a way that: 1) the average number of customers served by a vehicle is either

5 or 10, and 2) two or three facilities are required for serving the whole demand.

Note that no customer with extremely low (10 units or less) or extremely high

(more than 20 units) demands is present.

iii. Set S3 contains 12 randomly generated instances from the experiments of Akca

et al. [4]. Facilities all have limited capacities, chosen in such a way that at least

two of the facilities must be open. The vehicle capacities are such that the average

number of customers per route is between 4 and 7, and that the longest route serves

at most 8 customers.

iv. Set S4 contains 6 instances with capacitated vehicles and uncapacitated facilities

from the experiments of Tuzun and Burke [142]. The fixed costs of the facilities

are relatively low compared to the routing costs.
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Additionally, sets S1 and S2 are also subdivided into small instances (those with 50

customers or less) and large instances (those having more than 50 customers). We have

used the upper bounds reported by Baldacci et al. [16] as cutoff values during the branch-

and-bound search. The idea is to measure the efficiency of each of the formulations for

closing the optimality gap. For a self-contained methodology, these upper bounds should

be obtained by a suitable heuristic, which is beyond the scope of this paper. The data sets

can all be obtained from the website http://www.crt.umontreal.ca/∼ccontard.

We have designed and implemented five sets of experiments.

In the first set of experiments, we compute the linear relaxation lower bound for

each of the four formulations, and compare their quality as well as the CPU time taken

by each of them. The results are reported in Tables 3.II-3.V. In these tables, columns

labeled z∗ represent the upper bound for each instance. Columns labeled gap (%) and

t (s) stand for the relative gap (for a given lower bound zlb it is computed as (z∗ −
zlb)/z∗×100) and the CPU time in seconds. As shown by these tables, algorithms VFF3

and CFF3 normally produce the tightest lower bounds, at the expense of much larger

computing times. However, algorithms VFF2 and CFF2 are the fastest to compute their

respective lower bounds. There are two possible readings for these results. On the one

hand, compact two-index formulations give reasonably good lower bounds in very short

computing times. Therefore, much larger branching trees can be inspected during the

same amount of time, with respect to formulations with more variables. On the other

hand, the lower bounds obtained by three-index formulations are in some cases much

tighter than the ones obtained by the two-index formulations. Therefore, the structure

of the CLRP is better captured in the former case, and in some instances the differences

are dramatic (like on instances of set S4). One could thus ask, whether it is possible or

not to tighten two-index formulations with valid inequalities so to produce lower bounds

that are comparable to those obtained by three-index formulations.

In the second set of experiments, we have run the four algorithms for a maximum

time of two hours. The objective is to test and compare their efficiency to rapidly solve

some relatively easy instances. In Tables 3.VI-3.IX, columns are similar to previous

tables. We have added a column labeled nodes that reports the number of nodes inspected
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during the branching tree. As we can see, formulation VFF2 gives the best results on

average. Indeed, it is able to solve 32 instances, four more than VFF3, three more than

CFF2 and 6 more than CFF3. However, three-index formulations produce tighter gaps

on instances ppw-50x5-0b and ppw-50x5-2b. This suggests that two-index formulations

are not able in those cases to capture some important underlying information of the

CLRP structure that is indeed beneficial to three-index formulations. Moreover, instance

ppw-50x5-0b is solved to optimality only by formulation VFF3. The overall conclusion

is that compact two-index formulations produce the best average results at the expense

of underestimating some important information.

In the third set of experiments, we have run the algorithms for a maximum time of

12 hours. The objective is to measure the efficiency of each formulations for solving of

some hard instances of the CLRP. The results are summarized in Tables 3.X-3.XIII. The

columns are the same as for the previous experiments. Now, the number of instances

solved is 32 for VFF2 and VFF3, 30 for CFF2 and 29 for CFF3. Note that this increase

in the cpu time has a marginal impact on the performance of two-index formulations,

whereas three-index formulations seem to scale better. The is due mainly to the fact

that branching has a lower impact on trees of large size, which is typically the case with

compact two-index formulations.

In the fourth set of experiments, we compare algorithm VFF2 against the branch-

and-cut algorithm of Belenguer et al. [19]. In Table 3.XIV, headers # instances, # solved

and avg. gap stand for the total number of instances, the number of instances solved to

optimality and the average optimality gap on each subset of instances. Our implemen-

tation of the branch-and-cut algorithm VFF2 is able to produce tighter gaps in average

than the one of Belenguer et al. [19]. Moreover, our algorithm scales to solve some

large instances with up to 100 customers (ppw-100x10-2b, P112212, P113212), while

the method of Belenguer et al. [19] was able to solve instances with up to 50 customers.

Several refinements in our implementation might explain these results, including the use

of stronger inequalities, efficient separation algorithms, as well as the dynamic separa-

tion strategy during the branching tree that deactivates cuts that do not seem promising

in a certain branch.
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In the fifth and last set of experiments, we compare the results obtained by our

branch-and-cut algorithms against the branch-and-cut-and-price method of Baldacci et al.

[16]. In Table 3.XV we summarize the number of instances solved by their method (col-

umn BMW) against the instances solved by all of our methods (column FF). As shown

in this table, the branch-and-cut-and-price method of Baldacci et al. [16] is able to solve

much more instances than all of the flow formulations together. This is not a surprising

result since column generation algorithms are based on much tighter formulations. How-

ever, it is worth noticing that their method failed to solve instance ppw-50x5-2b which

has been solved by algorithm VFF3, and also solves instance ppw-50x5-0b in a much

longer time than VFF3, which suggests that some of the inequalities introduced in this

paper would deserve being included into set-partitioning formulations.

3.7 Concluding Remarks

We have introduced three new flow formulations for the CLRP that dominate, in

terms of the linear relaxation lower bound, the previous two-index vehicle-flow formu-

lation of Belenguer et al. [19]. We derive new valid inequalities for each of the formula-

tions and strengthen some of the previously known inequalities. In addition, we are able

to obtain new classes of multistar inequalities for the vehicle-flow formulations as linear

combinations of the degree constraints and assignment constraints for the commodity-

flow formulations. For each of the inequalities used in this paper, we introduce separa-

tion algorithms that are either new or that generalize the separation methods introduced

by Belenguer et al. [19]. We have implemented suitable branch-and-cut algorithms us-

ing each of the three formulations introduced in this paper plus the original two-index

vehicle-flow formulation and present computational results comparing them. The results

show that, in most cases, compact formulations produce the tightest gaps in the long run

due to their ability to perform more branching nodes. However, on some hard instances

where facility capacities are important, three-index formulations seem to be the right

choice (like on instances ppw-50x5-0b, ppw-50x5-2b, ppw-100x5-3b, ppw-100x10-3b).

This is a direct consequence of an important drawback of compact two-index formula-
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tions with respect to three-index formulations, and it is the fact that it is not possible to

follow the flow leaving from a facility at every single node of the graph. We also com-

pare the algorithms used in this paper against the state-of-the-art solvers for solving the

CLRP, namely the branch-and-cut method of Belenguer et al. [19] and the branch-and-

cut-and-price of Baldacci et al. [16]. The results show that our implementation of the

branch-and-cut on the two-index vehicle-flow formulation produces tighter gaps than the

one of Belenguer et al. [19], and is able to scale and solve large instances with up to 100

customers. The branch-and-cut-and-price algorithm of Baldacci et al. [16] in general

outperforms the flow-based algorithms; however, it is worth remarking that on two in-

stances (ppw-50x5-0b, ppw-50x5-2b) the three-index formulation obtained tighter gaps,

and even solved ppw-50x5-2b which no other exact method did before. These results

suggest that taking into consideration the facilities from where the flow originates has

significant impact on the performance of an exact algorithm. As an avenue of future

research, we believe that embedding some of the inequalities introduced in this paper

into a branch-and-cut-and-price algorithm could result in a more robust exact algorithm

for the CLRP.

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research

Council of Canada (NSERC) and Le fonds québécois de la recherche sur la nature et les

technologies (FQRNT) for their financial support.



62

Instance z∗
VFF2 VFF3 CFF2 CFF3

gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)
Perl83-12x2 204.00 0.61 0.01 0.00 0.03 0.48 0.08 0.00 0.03
Gas67-21x5 424.90 3.99 0.21 3.12 0.84 4.12 0.44 2.98 0.53
Gas67-22x5 585.11 0.10 0.04 0.10 0.24 0.10 0.07 0.10 0.41
Min92-27x5 3062.02 5.62 0.29 2.15 2.26 6.24 0.39 2.64 1.32
Gas67-29x5 512.10 4.89 0.46 3.26 2.11 4.76 1.90 3.64 1.74
Gas67-32x5 562.22 5.72 0.51 3.90 3.59 5.72 1.26 4.05 1.33
Gas67-32x5-2 504.33 3.27 0.80 1.86 2.17 3.24 1.25 2.19 1.29
Gas67-36x5 460.37 1.30 1.40 1.16 8.28 1.35 5.35 0.71 9.42
Chr69-50x5ba 565.62 5.62 3.74 4.41 14.32 5.63 6.40 3.83 6.76
Chr69-50x5be 565.60 8.85 3.04 7.34 16.15 8.82 15.44 5.90 5.45
Perl83-55x15 1112.06 3.42 6.17 2.44 676.90 3.42 14.29 2.06 64.25
Chr69-75x10ba 886.30 14.47 23.54 11.67 1406.12 14.63 164.87 11.47 306.63
Chr69-75x10be 848.85 10.42 15.25 7.77 1920.82 9.84 227.24 7.40 284.03
Chr69-75x10bmw 802.08 9.27 20.18 6.68 1165.53 9.69 92.79 6.58 237.99
Perl83-85x7 1622.50 2.53 18.93 2.06 966.41 2.53 199.44 1.96 153.35
Das95-88x8 355.78 5.73 13.15 4.81 1028.53 6.03 66.88 4.73 336.98
Chr69-100x10 833.43 4.89 9.71 4.07 2299.52 4.82 51.37 3.79 709.63
Average 5.34 6.91 3.93 559.64 5.38 49.97 3.77 124.77
Average in small instances 4.00 1.05 2.73 5.00 4.05 3.26 2.60 2.83
Average in large instances 7.25 15.28 5.64 1351.98 7.28 116.70 5.43 298.98

Table 3.II: Gaps and CPU times after linear relaxation on instances of set S1
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Instance z∗
VFF2 VFF3 CFF2 CFF3

gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)
ppw-20x5-0a 54793 4.57 0.35 3.74 1.00 4.54 0.83 3.89 0.68
ppw-20x5-0b 39104 0.00 0.02 0.00 0.10 0.00 0.04 0.00 0.14
ppw-20x5-2a 48908 2.71 0.26 2.31 0.59 2.78 0.76 2.35 0.53
ppw-20x5-2b 37542 0.00 0.01 0.00 0.06 0.00 0.02 0.00 0.10
ppw-50x5-0a 90111 10.94 27.10 5.98 100.66 10.89 51.78 5.88 26.38
ppw-50x5-0b 63242 7.50 5.05 6.64 28.54 7.76 14.70 6.67 16.58
ppw-50x5-2a 88298 7.52 5.08 5.81 36.84 7.50 17.22 5.84 11.04
ppw-50x5-2b 67308† 5.63 2.75 5.74 16.20 5.66 12.78 5.72 16.38
ppw-50x5-2a’ 84055 1.95 29.50 1.89 65.33 1.97 125.81 1.93 25.09
ppw-50x5-2b’ 51822 0.86 1.76 0.72 19.48 0.85 3.51 0.82 9.82
ppw-50x5-3a 86203 10.23 14.67 5.15 72.97 10.20 52.76 5.26 25.99
ppw-50x5-3b 61830 6.26 4.38 5.30 23.36 5.84 9.94 5.22 9.67
ppw-100x5-0a 274814 3.56 2509.03 2.82 4955.67 3.59 3117.51 2.86 1218.73
ppw-100x5-0b 214392 3.21 391.48 3.09 5605.32 3.18 1508.11 3.33 10298.00
ppw-100x5-2a 193671 3.77 365.93 2.17 2402.35 3.81 3127.55 2.21 460.93
ppw-100x5-2b 157173 2.34 83.27 1.91 816.75 2.32 613.30 1.96 365.99
ppw-100x5-3a 200079 8.82 108.07 2.23 2331.79 8.81 1664.74 2.39 441.84
ppw-100x5-3b 152441 5.08 27.40 2.62 792.25 5.08 148.33 2.66 163.83
ppw-100x10-0a 289018 7.88 1133.84 5.78 7281.82 7.34 4708.86 4.97 1249.72
ppw-100x10-0b 234641 4.74 147.20 4.53 4060.38 4.78 1235.21 4.45 1638.18
ppw-100x10-2a 243590 4.07 1473.84 3.28 7285.58 4.11 3823.62 3.21 1214.73
ppw-100x10-2b 203988 2.50 90.42 2.48 1928.96 2.46 612.71 2.34 1308.84
ppw-100x10-3a 252421 8.65 740.38 6.17 7228.90 8.72 3433.17 6.28 1188.19
ppw-100x10-3b 204597 5.00 112.22 4.75 4384.28 4.99 1011.74 4.60 857.56
Average 4.91 303.08 3.55 2059.97 4.88 1053.96 3.53 856.21
Average in small instances 4.85 7.58 3.61 30.43 4.83 24.18 3.63 11.87
Average in large instances 4.97 598.59 3.49 4089.50 4.93 2083.74 3.44 1700.55
† New upper bound found.

Table 3.III: Gaps and CPU times after linear relaxation on instances of set S2

Instance z∗
VFF2 VFF3 CFF2 CFF3

gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)
cr30x5a-1 819.5 3.33 0.89 2.06 3.71 3.29 1.62 2.99 2.09
cr30x5a-2 821.5 5.89 0.41 5.29 2.61 5.90 0.97 4.92 1.67
cr30x5a-3 702.3 0.56 0.71 0.09 2.52 0.73 1.22 0.38 2.66
cr30x5b-1 880.0 7.39 0.52 5.91 3.00 7.35 1.55 5.61 1.35
cr30x5b-2 825.3 3.52 1.31 1.65 3.71 3.62 3.31 1.72 1.54
cr30x5b-3 884.6 3.33 1.09 2.14 4.47 3.25 2.73 2.20 2.01
cr40x5a-1 928.1 8.95 1.32 8.01 9.20 8.96 3.28 7.08 2.01
cr40x5a-2 888.4 8.83 1.04 6.17 9.91 8.92 1.95 6.09 3.63
cr40x5a-3 947.3 7.47 2.48 6.31 9.43 7.45 7.56 5.50 4.91
cr40x5b-1 1052.0 10.26 2.80 6.64 16.68 10.13 6.70 6.52 4.66
cr40x5b-2 981.5 8.57 1.26 3.70 16.18 8.42 4.55 3.79 5.41
cr40x5b-3 964.3 4.51 2.32 2.92 17.40 4.46 8.22 2.94 3.94
Average 6.05 1.35 4.24 8.23 6.04 3.64 4.14 2.99

Table 3.IV: Gaps and CPU times after linear relaxation on instances of set S3
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Instance z∗
VFF2 VFF3 CFF2 CFF3

gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)
P111112 1467.69 12.64 16.31 7.94 2180.38 12.60 119.93 6.91 313.17
P111212 1394.8 15.92 41.04 11.37 1763.18 15.91 214.59 9.09 451.88
P112112 1167.16 11.69 42.24 3.69 3245.86 11.91 339.71 3.72 547.29
P112212 791.66 19.99 53.95 2.97 1021.34 20.01 111.13 2.94 274.73
P113112 1245.45 19.27 31.51 7.84 4987.70 19.51 130.71 7.74 637.84
P113212 902.26 16.49 83.95 1.82 4383.76 16.90 774.21 1.96 1601.76
Average 16.00 44.83 5.94 2930.37 16.14 281.71 5.39 637.78

Table 3.V: Gaps and CPU times after linear relaxation on instances of set S4
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Family # instances
BBPPW VFF2

# solved avg. gap # solved avg. gap
S1 small 10 8 0.00 10 0.00†

S1 large 7 0 2.84 1 1.63†

S2 small 12 6 0.70 6 0.55
S2 large‡ 12 0 – 1 1.89
S3 all 12 12 0.00 12 0.00
S4 all‡ 6 0 – 2 1.63
Total 59 26 32
† Including only instances reported also in Belenguer et al. [19].
‡ Instances not reported in Belenguer et al. [19].

Table 3.XIV: Overall results comparison on branch-and-cut algorithms

Family # instances
BMW FF

# solved # solved
S1 small 10 10 10
S1 large 7 5 1
S2 small 12 12 8
S2 large 12 6 1
S3 all 12 12 12
S4 all 6 5 2
Total 59 50 34

Table 3.XV: Overall results comparison against method of Baldacci et al. [16]

3.8 Proofs of lemmas and propositions

Proof of Proposition 3.2.1 It is direct to check that inequalities (3.24)-(3.25) imply the

following inequalities

Qw ji ≤ (Q−d j)(wi j +w ji) {i, j} ∈ E (3.60)

Qwi j ≥ d j(wi j +w ji) {i, j} ∈ E. (3.61)

By adding identities (3.19) for customers j ∈ S and after reducing we obtain

w(δ−(S))+2 ∑
j∈S

d jy(I : { j}) = w(δ+(S))+2d(S)

By adding w(δ+(S)) at both sides of the identity above and after using identities

(3.22) we obtain at the left-hand side Qx(δ (S))+2∑ j∈S d jy(I : { j}). The desired right-
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hand side is obtained after using constraint (3.61) for w(δ+(S)).

Proof of Proposition 3.2.2 It is easy to see that the (DFI) imply the following inequali-

ties

Qwi
jh ≤ (Q−d j)(wi

h j +wi
jh) i ∈ I,{h, j} ∈ E (3.62)

Qwi
h j ≥ d j(wi

h j +wi
jh) i ∈ I,{h, j} ∈ E (3.63)

By adding the flow conservation equations (3.27) for customers j ∈ S and facilities

i ∈ I \H we obtain

wI\H(δ−(S))+2 ∑
j∈S

d jy(I \H : { j}) = wI\H(δ+(S))+2 ∑
i∈I\H

∑
j∈S

d jui j

By adding wI\H(δ+(S)) at both sides of the above identity its left-hand turns to be

equal to QxI\H(δ (S))+2∑ j∈S d jy(I \H : { j}). For the right-hand size, we make use of

the inequalities (3.62)-(3.63) in order to get wI\H(δ+(S))≥ ∑h∈S
j/∈S

d jx
I\H
h j .

Proof of Proposition 3.3.1 if xi(F) < |F | then the constraint is trivially satisfied. If

xi(F) = |F |, then all the edges of F are used by vehicles linked to facility i. Since

|F | is odd, it follows that at least one edge, also linked to facility i, must be used in

δ (S)\F .

Proof of Proposition 3.3.2 if ∑ j∈S ui j = t, then exactly t customers in S are served from

facility i. For those customers, say S′, given that d(S′)≤Q, and given that the triangular

inequality holds between distances, then the customers in S′ must be served all by the

same vehicle. Indeed, if more than one vehicle serves S′, then it is always possible to

serve them at lower cost by a single vehicle.

Proof of Proposition 3.3.3 If y(I \ I′ : S′) = y(I \ I′ : S′′) = |S′′| then x((I \ I′)∪S : S) =
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x((I \ I′)∪ (S\S′′) : S\S′′), and then

x((I \ I′)∪S : S)+2y(I \ I′ : S\S′) = x((I \ I′)∪ (S\S′′) : S\S′′)+2y(I \ I′ : S\S′′)

≥ r(S\S′′, I′)

≥ r(S\S′, I′)

= r(S, I′).

Proof of Proposition 3.3.4 Let S′′ ⊆ S′ such that y(I \ I′ : S′) = y(I \ I′ : S′′) = |S′′|. This

means that customer set S′′ is served by single vehicles from I \ I′. Thus, x((I \ I′)∪S :

S) = x((I \ I′)∪ (S\S′′) : S\S′′) so

x((I \ I′)∪S : S)+2y(I \ I′ : S\S′) = x((I \ I′)∪ (S\S′′) : S\S′′)+2y(I \ I′ : S\S′′)

≥ 2r(S\S′′, I′ \{i})+2zi(r(S\S′′, I′)− r(S\S′′, I′ \{i}))

≥ 2r(S\S′, I′ \{i})+2zi(r(S\S′, I′)− r(S\S′, I′ \{i}))

= 2r(S, I′ \{i})+2zi(r(S, I′)− r(S, I′ \{i})).

Proof of Proposition 3.3.5 Let us consider the SFCI and ESFCI in their weaker version

that does not consider the subsets S′. These constraints can be written using the degree

constraints as x(E(S))+ 1
2x(I′ : S)+y(I′ : S)≤ |S|−r(S, I′) (for the SFCI) and x(E(S))+

1
2x(I′ : S)+y(I′ : S)≤ |S|− r(S, I′ \{i})+ zi(r(S, I′ \{i})− r(S, I′)) (for the ESFCI). We

have

2αx≤ ∑
u∈H

x(δ (u))+
2

∑
k=1

sk

∑
j=1

(x(E(T k
j ))+ x(E(T k

j \H))+ x(E(T k
j ∩H)))

≤ 2|H|+
2

∑
k=1

sk

∑
j=1

(x(E(T k
j ))+ x(E(T k

j \H))+ x(E(T k
j ∩H))).

We now use the ESFCI in their inner form for 1≤ j ≤ s′1:
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x(E(T 1
j ))≤

1
2

x(I j : S1
j)+ y(I j : S1

j)+ |S1
j |− r(S1

j , I j \{i j})

+ zi j(r(S
1
j , I j \{i j})− r(S1

j , I j))

≤1
2

x(I j : J)+ y(I j : J)+ |S1
j |− r(S1

j , I j \{i j})

+ zi j(r(S
1
j , I j \{i j})− r(S1

j , I j))

x(E(T 1
j \H))≤1

2
x(I j : S1

j \H)+ y(I j : S1
j \H)+ |S1

j \H|− r(S1
j \H, I j \{i j})

+ zi j(r(S
1
j \H, I j \{i j})− r(S1

j \H, I j))

≤1
2

x(I j : J)+ y(I j : J)+ |S1
j \H|− r(S1

j \H, I j \{i j})

+ zi j(r(S
1
j \H, I j \{i j})− r(S1

j \H, I j))

x(E(T 1
j ∩H))≤|S1

j ∩H|− r(S1
j ∩H)

and then

x(E(T 1
j ))+ x(E(T 1

j \H))+ x(E(T 1
j ∩H))

≤ x(I j : J)+2y(I j : J)+2|S1
j |+ zi jΛ(H,T 1

j )− r̂(H,T 1
j ).

For s′1 < j ≤ s1 we do a similar development obtaining

x(E(T 1
j ))+ x(E(T 1

j \H))+ x(E(T 1
j ∩H))≤ x(I j : J)+2y(I j : J)+2|S1

j |− r̂(H,T 1
j ).

For the remaining teeth we have

x(E(T 2
j ))+ x(E(T 2

j \H))+ x(E(T 2
j ∩H))≤ 2|S2

j |− r̂(H,T 2
j ).
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Then, adding all these terms and bounding we obtain

2αx≤ 2|H|+ ∑
1≤ j≤s1

(
x(I j : J)+2y(I j : J)

)
+ ∑

1≤ j≤s′1

zi jΛ(H,T 1
j )+2 ∑

k=1,2
∑

1≤ j≤sk

|Sk
j|− r̂(H,Π).

As x(I j : J)+ 2y(I j : J) is even for 1 ≤ j ≤ s1, Λ(H,T 1
j ) is even for 1 ≤ j ≤ s′1 and

r̂(H,Π) is odd, after dividing by 2 and rounding the result follows.

Proof of Lemma 3.3.6 If S⊆WI′ then d(S∪T )≤ b(I′) and the result is implied by the

SFCI. If S⊆W I′ then x(E(S))+ 1
2x(I′ : S)+y(I′ : S)≤ |S|− 1

Qd(S)≤ |S|− 1
Q(d(S∪T )−

b(I′)). If S = S1 ∪ S2,S1 = S∩WI′,S2 = S∩W I′ , then x(E(S))+ x(I′ : S)+ y(I′ : S) =

∑i=1,2 x(E(Si))+
1
2x(I′ : Si)+y(I′ : Si)≤ |S1|+ |S2|− 1

Q(d(S1∪T )−b(I′)+d(S2)).

Proof of Proposition 3.3.7 First, note that constraint (3.54) can be written, using the

degree constraints, in the following equivalent form:

x(E(S))+ 1
2x(I′ : S)+ y(I′ : S)+ 1

Q ∑
j/∈S

d jη(I′,S, j)≤ |S|− 1
Q(d(S)−b(I′)). (3.64)

Let us decompose the set S into three subsets S0 = { j ∈ S : η(I′,S, j) = 0}, S1/2 =

{ j ∈ S : η(I′,S, j) = 1/2} and S1+ = { j ∈ S : η(I′,S, j)≥ 1}. Using this for the summa-

tion in the left-hand side of the equation (3.64) we have

∑
j/∈S

d jη(I′,S, j) =
1
2

d(S1/2)+ ∑
j∈S1+

d jη(I′,S, j). (3.65)

But now, the second term of this last expression can be decomposed and bounded

above as follows:

∑
j∈S1+

d jη(I′,S, j) = ∑
j∈S1+

(d j−Q)η(I′,S, j)+Q ∑
j∈S1+

η(I′,S, j)

≤ d(S1+)−Q|S1+|+Q ∑
j∈S1+

η(I′,S, j).
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Thus, the left-hand side of constraint (3.64) can be bounded above by

x(E(S))+ 1
2x(I′,S)+ y(I′,S)+ 1

2Qd(S1/2)+
1
Qd(S1+)−|S1+|+ ∑

j∈S1+

η(I′,S, j). (3.66)

But now, we have

x(E(S))+ 1
2x(I′,S)+ y(I′,S)+ ∑

j∈S1+

η(I′,S, j)

≤ x(E(S∪S1+))+
1
2x(I′,S∪S1+)+ y(I′,S∪S1+).

Using this, (3.66) can be bounded above by

x(E(S∪S1+))+
1
2x(I′,S∪S1+)+ y(I′,S∪S1+)+

1
2Qd(S1/2)+

1
Qd(S1+)−|S1+|.

Now, as S1/2 ⊆WI′ we can apply the lemma and thus this last expression can be bounded

above by

|S∪S1+|− 1
Q(d(S∪S1+∪S1/2)−b(I′))+ 1

2Qd(S1/2)+
1
Qd(S1+)−|S1+|

≤ |S|− 1
Q(d(S)−b(I′)).

Proof of Lemma 3.4.1 Let h, j ∈ JS be such that ω∗h j ≥ 1 or [φ∗ih ≥ 1 and φ∗i j ≥ 1]. Let

S ⊆ JS be a customer set crossing {h, j}, i.e., S∩ {h, j},S \ {h, j} and {h, j} \ S 6= /0.

Without loss of generality we suppose that j ∈ S,h /∈ S. We will show that T = S∪{h}
produces a violation of value at least that of S. Let us define σi(T ) = ω∗((I \{i})∪T :

T )+2φ∗(I\{i} : T ). Because r(S,{i})≤ r(T,{i}) it suffices to show that σi(T )≤σi(S).
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In fact

σi(T )−σi(S) =[ω∗(δ (T ))+2φ
∗(I : T )]− [ω∗(δ (S))+2φ

∗(I : S)]

+ [ω∗(i : S)−ω
∗(i : T )]+2[φ∗(i : S)−φ(i : T )]

=[ω∗(δ (T ))+2φ
∗(I : T )]− [ω∗(δ (S))+2φ

∗(I : S)]− [ω∗ih +2φ
∗
ih].

The submodularity of the cut function implies

[ω∗(δ (T ))+2φ
∗(I : T )]− [ω∗(δ (S))+2φ

∗(I : S)]≤

[ω∗(δ ({h, j}))+2φ
∗(I : {h, j})]− [ω∗(δ ( j))+2φ

∗(I : j)]

and then

σi(T )−σi(S)≤ ω
∗(δ (h))+2φ

∗(I : h)−2ω
∗
h j− (ω∗ih +2φ

∗
ih)

≤ 2−2ω
∗
h j− (ω∗ih +2φ

∗
ih).

The result follows by applying the shrinking hypothesis.

Proof of Lemma 3.4.2 Let T ⊆ JS and h ∈ T be such that φ∗ih = 1, d∗h ≤ Q. Let us

denote S = T \ {h}. Because h is linked only to facility i, we have ω∗((I \ {l})∪ S :

S) = ω∗((I \{l})∪T : T ). We also have φ∗(I \{l} : S) = φ∗(I \{l} : T )−1. It follows

that ω∗((I \{l})∪S : S)+2φ∗(I \{l} : S) = ω∗((I \{l})∪T : T )+2φ∗(I \{l} : T )−2.

If T and k violate a BFCI then ω∗((I \ {l})∪T : T )+ 2φ∗(I \ {l} : T ) < 2r(T,{l}) ≤
2(r(S,{l})+1) and the result follows.

Proof of Lemma 3.4.4 S1,S2 are not connected between them nor with facility i, i.e.,

x∗(S1 : S2) = x∗(i : S2) = y∗(i : S2) = 0. Suppose that (i,S) defines a violated BFCI, i.e.,

x∗((I \{i} : S : S)+2y∗(I \{i} : S)< 2r(S,{i}).
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But given that S1 and S2 lie in different connected components we have

x∗((I \{i} : S : S)+2y∗(I \{i} : S) = x∗(δ (S2))+2y∗(I : S2)

+ x∗((I \{i})∪S1 : S1)+2y∗(I \{i} : S1).

Joining both relationships and taking into account that S2 satisfies the CC we have

x∗((I \{i})∪S1 : S1)+2y∗(I \{i} : S1)< 2r(S,{i})− [x∗(δ (S2))+2y∗(I : S2)]

≤ 2r(S,{i})−2r(S2)

≤ 2r(S1,{i})

and the result follows.

Proof of Proposition 3.4.5 Let S ⊆ JS be a customer set in the shrunk graph crossing

the set {u,v}, i.e., S∩ {u,v},S \ {u,v},{u,v} \ S 6= /0. Without loss of generality, we

suppose that u ∈ S,v /∈ S. We will show that the set T = S∪{v} induces a violation of

value at least the same as that induced by S. First note that if u or v take the role of

nodes h or j in inequality (3.6) then it will not be violated. As a consequence of this,

nodes that can take the place of h or j are among those that have not been shrunk. Let us

compute the left-hand side of inequality (3.6) for S and T , that we denote as α(S) and

α(T ), respectively, and see that they satisfy the following relationship:

α(T ) = α(S)+ω
∗(δ (v))−2ω

∗(v : S)

≤ α(S).

As the right hand side of the inequality is the same for both S and T , the violation

incurred by set T is bigger than that of S and the result follows.
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In this paper we present an exact algorithm for the Capacitated Location-Routing Prob-

lem (CLRP) based on column and cut generation. The CLRP is formulated as a set-

partitioning problem which also inherits all of the known valid inequalities for the flow

formulations of the CLRP. We introduce five new families of inequalities that are shown

to dominate some of the cuts from the two-index formulation. The problem is then

solved by column generation, where the sub-problem consists in finding a shortest path

of minimum reduced cost under capacity constraints. We first use the two-index formu-

lation for enumerating all of the possible subsets of depot locations that could lead to

an optimal solution of cost smaller than or equal to a given upper bound. For each of

these subsets, the corresponding Multiple Depot Vehicle Routing Problem is solved by

means of column generation. The results show that we can improve the bounds found in

the literature, solve to optimality some previously open instances, and improve the upper

bounds on some other.

Key words: location-routing, vehicle routing, branch-and-cut-and-price, column genera-

tion.
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4.1 Introduction

In the Capacitated Location-Routing Problem (CLRP) we are given a set I of poten-

tial facilities and a set J of customers. With every facility i ∈ I are associated a fixed

opening cost fi and a capacity bi. To every customer j ∈ J is associated a demand d j.

Distances are assumed to be symmetric. The problem can thus be defined on an undi-

rected graph G = (V,E), where V = I∪J is the vertex set and E is the edge set. To every

edge e = {i, j} we associate a routing cost ci j. The fleet is assumed to be of unlimited

size and homogeneous, each vehicle having a capacity Q. The objective is to choose a

subset of facilities and to construct vehicle routes around these facilities to visit every

customer exactly once, respecting both vehicle and facility capacities while minimizing

the sum of fixed costs and routing costs.

The CLRP arises in several real-world applications. Labbé and Laporte [86] solve

the problem of locating postal boxes while minimizing a linear combination of routing

costs (those of the mail collecting trucks) and customer inconvenience produced by their

distance to the nearest postal box. Billionet et al. [21] consider a location problem arising

in mobile networks. The problem consists in locating radio-communication stations,

designing rings and building antennaes inside these rings at minimum cost. Gunnarsson

et al. [71] solve a location-routing problem arising in the pulp distribution industry in

Scandinavia.

The CLRP can be formulated as a three-index mixed-integer program [115]. In such

a formulation, asymmetries in the distance matrix and heterogeneities in the vehicle ca-

pacities can be easily taken into account. However, due to the large number of variables

and its poor linear programming relaxation it has no practical use within an enumeration

method such as branch-and-bound. In the context of exact algorithms for solving the

CLRP, Belenguer et al. [19] developed a two-index formulation and proposed several

families of valid inequalities, such as y-Capacity Cuts (y-CC), Path Constraints (PC),

Facility Degree Constraints (FDC), Imparity Constraints (IC) and Facility Capacity In-

equalities (FCI). They solve the problem by means of branch-and-cut and their algorithm

succeeds in solving small and medium size instances with up to 50 customers. Con-
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tardo et al. [36] introduced three new formulations of the CLRP based on vehicle flows

and commodity flows. They introduced strengthenings of the FCI as well as Location-

Routing Comb Inequalities (LR-CI), Location-Routing Generalized Large Multistar In-

equalities (LRGLM) and y-Generalized Large Multistar Inequalities (y-GLM), exploit-

ing the fact that facilities have limited capacities. Their algorithms were able to solve

instances containing up to 100 customers, the largest for branch-and-cut methods. Akca

et al. [4] developed a set-partitioning formulation based on a Dantzig-Wolfe decompo-

sition of the three-index model. They solve the problem by means of branch-and-price,

where the subproblem is a shortest path problem under capacity constraints (SPPRC).

Their formulation provides reasonably good bounds at the root node of the search tree

but does not appear to be effective for closing the gap using branching. Baldacci et al.

[16] also formulate the CLRP as a set-partitioning problem. They use three different

relaxations of the formulation that are applied sequentially in an additive manner. In the

last step, they solve a small number of MDVRP by means of a cut-and-price-and-branch

method, in which the root node is solved by colum generation, and then enumerate all

of the remaining columns whose reduced cost is smaller than a given gap. The result-

ing integer program is then solved by means of a general-purpose integer programming

solver. They use a stregthened version of the CC as well as clique inequalities. The

bounds provided by their model are very tight, being able to solve instances with up to

199 customers and 14 facilities.

The CLRP is N P-hard as it generalizes both the Capacitated VRP (CVRP) and

the Capacitated Facility Location Problem (CFLP). Moreover, the presence of capaci-

ties for both the vehicles and the facilities makes it particularly hard. Because of this,

solution approaches for solving medium and large size instances have mainly focused

on the development of heuristics. These heuristics in most cases use some decomposi-

tion scheme to divide the problem into a design sub-problem for the location decisions

and an operational sub-problem for the routing part [77, 97, 99, 115, 146]. Recently,

Prins et al. [120, 121, 122] have proposed several metaheuristics that include memetic

algorithms, cooperative Lagrangean relaxation with tabu search and greedy randomized

adaptive search procedure (GRASP). Computational experience shows that the second
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approach is the most effective one for tackling large instances of the CLRP.

The contributions of this paper can be summarized as follows:

i. We adapt the set-partitioning formulation due to Akca et al. [4] so that all of the

cuts valid for the two-index formulation of the CLRP [19, 36] can be easily incor-

porated.

ii. We introduce two bounding procedures that are applied sequentially and that al-

low, in most cases, to reduce the CLRP to a series of multiple depot VRP, as in

Baldacci et al. [16]. Our computational results show that our bounding procedures

can be stronger than those of Baldacci et al. [16] for some instances.

iii. We introduce several new families of cuts that are effective for closing the opti-

mality gap. Moreover, our computational experience shows that using state-space

relaxation in the pricing problem suffices to get bounds close to those obtained by

pricing on elementary routes (routes that do not contain cycles).

iv. We introduce a new fathoming rule that accelerates the solution of the pricing

subproblems.

As a result, our algorithm is able to solve all instances that are also solved by the exact

method of Baldacci et al. [16] as well as four previously open instances. Additionally,

we improve the best known feasible solution for three other instances. Moreover, for the

instances that remain unsolved we improve the best known lower bounds.

The paper is organized as follows. In Section 4.2 we present some formulations of

the CLRP, namely the two-index vehicle-flow formulation due to Belenguer et al. [19] as

well as the set-partitiong formulation due to Akca et al. [4]. In Section 4.3 we describe

the valid inequalities used through this paper. It includes some known valid inequalities

from the two-index formulation and the set-partitioning problem as well as new valid

inequalities that are shown to be valid for the set-partitioning formulation of the CLRP.

In Section 4.4 we describe the exact algorithm used to solve the CLRP to optimality. We

first describe the separation algorithms used to find violated valid inequalities. We then

describe the different bounding procedures as well as the pricing algorithms used to solve

the corresponding set-partitioning problems. Finally, we discuss some computational
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issues that are mostly implementation-specific and that have an important impact on

the performance of the algorithm. In Section 4.5 we present our computational results

and compare against the state-of-the-art solvers for solving the CLRP. We conclude in

Section 4.6 with a summary of the proposed methodology and discuss possible avenues

of future research.

4.2 CLRP Formulations

In this section we first present the two-index vehicle-flow formulation of the CLRP

due to Belenguer et al. [19] and the set-partitioning formulation introduced by Akca et al.

[4]. We also show that any inequality valid for the two-index formulation can be easily

extended to the set-partitioning formulation.

4.2.1 Two-index vehicle-flow formulation

Belenguer et al. [19] proposed the following two-index vehicle-flow formulation for

the CLRP. For every vertex set U , let δ (U) be the edge subset containing all those

edges with exactly one endpoint in U . For two disjoint vertex sets T,U , let (T : U)

be the edge subset containing all edges with one endpoint in T and the other in U .

For every facility i ∈ I, let zi be a binary variable equal to 1 iff facility i is selected

for opening. For every edge e ∈ E, let xe be a binary variable equal to 1 iff edge e

is traversed once by some vehicle. Finally, for every edge e ∈ δ (I) let ye be a binary

variable equal to 1 iff edge e is used twice by some vehicle. For a given edge set F ⊆E let

x(F) = ∑e∈F xe, y(F) = ∑e∈F ye. For a given customer subset S ⊆ J, let d(S) = ∑ j∈S d j

and r(S) = dd(S)/Qe (which actually is a lower bound on the number of vehicles needed

to serve the customers in S). The formulation is the following.

min ∑
i∈I

fizi + ∑
e∈E

cexe +2 ∑
e∈δ (I)

ceye (TIF)
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subject to

x(δ ( j))+2y(I : { j}) = 2 j ∈ J (4.1)

x(δ (S))+2y(I : S)≥ 2r(S) S⊆ J, |S| ≥ 2 (4.2)

xi j + yi j ≤ zi i ∈ I, j ∈ J (4.3)

x(I : { j})+ y(I : { j})≤ 1 j ∈ J (4.4)

x((I \{i})∪S : S)+2y(I \{i} : S)≥ 2 i ∈ I,S⊆ J,d(S)> bi (4.5)

x(δ (S))≥ 2(x({h} : I′)+ x({ j} : I \ I′)) S⊆ J, |S| ≥ 2,h, j ∈ S, I′ ⊂ I (4.6)

zi ∈ [0,1] and integer i ∈ I (4.7)

xe ≥ 0 and integer e ∈ E (4.8)

ye ≥ 0 and integer e ∈ δ (I). (4.9)

Constraints (4.1) are the degree constraints at customer nodes. Constraints (4.2) are

capacity cuts (CC), whose role is to forbid at the same time proper tours disconnected

from facilities and tours serving a demand larger than Q. Constraints (4.3) ensure that

there is no outgoing flow leaving from closed facilities. Constraints (4.4) are the path

constraints for single customers. They forbid routes of the form i1 → j → i2, i1, i2 ∈
I, i1 6= i2, j ∈ J. Constraints (4.5) are the facility capacity inequalities (FCI). They forbid

the existence of routes leaving from a same facility i and serving a demand larger than

bi. Constraints (4.6) are the path constraints (PC) for multiple customers. Their role is

to prevent the route of a single vehicle from joining two different facilities.

Belenguer et al. [19] have shown that constraints (4.2) can be strengthened into the

so-called y-Capacity Cuts (y-CC):

x(δ (S))+2y(I : S\S′)≥ 2r(S) S⊆ J, |S| ≥ 2,S′ ⊂ S,r(S\S′) = r(S). (4.10)

These authors showed that the FCI can be generalized to take into account several

facilities in the same constraint. For a subset I′ ⊆ I of facilities, they define r(S, I′) =

d(d(S)− b(I′))/Qe (which is a lower bound on the number of vehicles that are needed
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to serve the demand of customers in S from facilities other than those in I′), where

b(I′) = ∑i∈I′ bi. The following constraint, introduced by Contardo et al. [36] and called

strengthened FCI (SFCI), takes into account this observation and can be shown to dom-

inate the FCI as well as the SFCI introduced by Belenguer et al. [19]:

x(I \ I′ : S)+2y(I \ I′ : S\S′)≥ 2r(S, I′) S⊆ J, I′ ⊆ I,S⊂ S′,r(S\S′, I′) = r(S, I′).

(4.11)

4.2.2 Set-partitioning formulation

We now describe the set-partitioning formulation introduced by Akca et al. [4] and

also used by Baldacci et al. [16], and link it to the two-index vehicle-flow formulation

so that all of the known cuts for the CLRP are also valid. Let us denote by Ωi the set of

all routes (possibly containing cycles) starting and ending at facility i ∈ I and servicing

a subset of at least two customers with total demand of Q or less, and let Ω = ∪i∈IΩi

be the set of all possible routes servicing two or more customers with total accumulated

demand of Q or less. For every l ∈ Ω let us associate a binary variable λl equal to 1 if

l appears in the optimal solution of the CLRP and 0 otherwise, and a cost cl for using

this route. For every edge e ∈ E and route l ∈Ω let qe
l be the number of times that edge

e appears in route l. If Ω is restricted to contain only elementary routes then qe
l is a

binary constant, otherwise it can be a general integer. On the other hand, let us define

binary variables yi j for {i, j} ∈ δ (I) equal to 1 iff customer j is served from facility i

by a single-customer route. Note that if distances satisfy the triangular inequality, the

optimal solution of this problem will only contain elementary paths even if Ω is enlarged

to contain routes with cycles. In fact, in this case it is always possible to build from a

solution with cycles, another solution with elementary routes at lower cost. Let us extend

the demands to facility nodes by letting dv = 0 for every v ∈ I. A valid formulation for

the CLRP is
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min ∑
i∈I

fizi + ∑
l∈Ω

clλl +2 ∑
e∈δ (I)

ceye (SPF)

subject to

∑
l∈Ω

∑
e∈δ ({ j})

qe
l λl +2y(I : { j}) = 2 j ∈ J (4.12)

∑
l∈Ωi

∑
{h, j}∈E

(dh +d j)q
{h, j}
l λl +2 ∑

j∈J
d jyi j ≤ 2bizi i ∈ I (4.13)

λl ≥ 0 and integer l ∈Ω (4.14)

ye ≥ 0 and integer e ∈ δ (I) (4.15)

zi ∈ [0,1] and integer i ∈ I (4.16)

In this formulation, constraints (4.12) ensure that each customer is served exactly

once. Constraints (4.13) are the facility capacity inequalities. They ensure that the de-

mand served from any facility i will not exceed its capacity bi. The distinction between

single-customer and multiple-customer routes naturally defines a relationship between

vehicle-flow variables x from the two-index formulation and λ , as follows

∑
l∈Ω

qe
l λl− xe = 0 e ∈ E (4.17)

In such a way, all of the valid inequalities from the two-index formulation of the

CLRP can be translated into the set-partitioning formulation by using identities (4.17).

4.3 Valid inequalities

In this section we describe the valid inequalities that can be applied to formula-

tion (SPF) and that strengthen the LP relaxation. First, we describe some of the valid

inequalities that have been developed in the context of the two-index and three-index

formulations by Belenguer et al. [19] and Contardo et al. [36]. We then describe new



90

families of valid inequalities that are shown to dominate several of the former and that

effectively strengthen formulation (SPF).

4.3.1 Valid inequalities for the two-index formulation

The valid inequalities for formulation (TIF) include several different families. Af-

ter a series of preliminary tests, we have decided to keep only a subset of them, namely

strengthened comb inequalities (SCI), framed capacity inequalities (FrCI), effective strength-

ened facility capacity inequalities (ESFCI), facility degree constraints (FDC) and location-

routing comb inequalities (LR-CI). To include any of these constraints into formulation

(SPF) we use identity (4.17). For details on the inequalities we refer to Lysgaard et al.

[101], Belenguer et al. [19] and Contardo et al. [36].

4.3.2 Valid inequalities for the set-partitioning formulation

The valid inequalities for the set-partitioning formulation include a strengthening

of the y-SCC introduced by Baldacci et al. [14] for solving the CVRP and also used

by Baldacci et al. [16] for the CLRP. We also introduce strengthenings of the degree

constraints (4.12), of SFCI constraints (4.11), ESFCI and FrCI. We complement this

with the addition of subset-row inequalities (SRI).

Any constraint in the two-index space can be translated into a constraint in the route

space by using identity (4.17). However, the constraints translated this way will not take

into account the fact that a route can cross more than once a given subset of vertices. For

a given subset of routes R ⊆Ω, let us define λ (R) = ∑l∈R λl . We also let i(l), J(l) and

E(l) to be the facility to which l is assigned, the set of customers served by l and the set

of edges used by l, respectively.

4.3.2.1 y-Strengthened CC (y-SCC)

Let us consider, for a given customer set S⊆ J and subset S′ ⊂ S such that r(S\S′) =

r(S), the corresponding y-CC as described in Belenguer et al. [19] and Contardo et al.

[36], for formulations (TIF) and (SPF), respectively:
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x(δ (S))+2y(I : S\S′)≥ 2r(S) for TIF (4.18)

∑
l∈Ω

∑
e∈δ (S)

qe
l λl +2 ∑

e∈[I:S\S′]
ye ≥ 2r(S) for SPF. (4.19)

Baldacci et al. [14] noted that the CC (4.2) can be strengthened by setting the co-

efficient of a given path variable λl to be 0 if l does not serve a customer in S and 1

otherwise, rather than counting the number of edges of l that are also in δ (S). For for-

mulation (SPF), the constraint is the following,

λ ({l : J(l)∩S 6= /0})+ y(I : S)≥ r(S). (4.20)

For the y-CC we can apply the same reasoning, as stated in the following proposition.

Proposition 4.3.1. Let S ⊆ J be a subset of customers, and S′ ⊂ S such that r(S \S′) =

r(S), the following constraint is valid for the CLRP and dominates the y-CC (4.19) and

the SCC (4.20).

λ ({l : J(l)∩S 6= /0})+ y(I : S\S′)≥ r(S). (4.21)

We call this constraint the y-Strengthened CC (y-SCC).

Proof Let us define L (T ) = {l ∈Ω : J(l)∩T 6= /0}, for T ⊆ J. We then have

λ (L (S)) = λ (L (S\S′))+λ (L (S′))−λ (L (S\S′)∩L (S′)). (4.22)

We have to prove that

λ (L (S))+ y(I : S\S′)≥ r(S)
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is a valid inequality of the CLRP. In fact, we have

λ (L (S))+ y(I : S\S′) = λ (L (S\S′))+λ (L (S′))−λ (L (S\S′)∩L (S′))+ y(I : S\S′)

≥ r(S\S′)+λ (L (S′))−λ (L (S\S′)∩L (S′))

≥ r(S\S′)

= r(S).

The dominance with respect to the y-CC comes from the fact that a route l that visits a

customer set S must have two or more edges crossing it, and the dominance with respect

to the SCC comes from the consideration of the customer set S′.

4.3.2.2 Strengthened Degree Constraints (SDEG)

Degree constraints in the two-index space count the number of times that a certain

node is traversed. If a node can be traversed several times by a single route, then a

stronger version of the degree constraint is

λ ({l ∈Ω : j ∈ J(l)})+ y(I : { j})≥ 1 j ∈ J. (4.23)

These constraints are relevant when, instead of restricting the state-space to elemen-

tary routes, it is rather relaxed to contain routes with cycles. In our algorithm we have

found that the addition of these constraints when pricing on non-elementary routes is

an effective method to get bounds close to the ones obtained by pricing on elementary

routes. Indeed, the problem of finding an appropriate balance between speed and lower

bound quality for different variants of the SPPRC has already been studied and is a key

aspect in the performance of column generation based algorithms for vehicle routing

problems [see, e.g., 23, 49, 128]. This intuition is supported by the following proposi-

tion,

Proposition 4.3.2. The optimal value of the linear relaxation of (SPF) when restricting

the space Ω to elementary routes is the same as when Ω is enlarged to routes with cycles

after adding the SDEG constraints (4.23).
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Proof Obviously elementary routes satisfy constraints (4.23), so the value of the linear

relaxation on the elementary case is at least as good as in the relaxed case. On the other

hand, in the relaxed case, no route with cycles will be basic after the addition of (4.23).

Indeed, let j ∈ J be any customer, and let Ω j,Ωcyc( j) be the subsets of routes traversing

j and containing a cycle in j, respectively (obviously Ωcyc( j) ⊆ Ω j). For that customer,

from constraints (4.12) we have

∑
l∈Ω j\Ωcyc( j)

∑
e∈δ ({ j})

qe
l λl = 2−2y(I : { j})− ∑

l∈Ωcyc( j)

∑
e∈δ ({ j})

qe
l λl (4.24)

Using (4.23), Ωcyc( j) also has to satisfy

∑
l∈Ω j\Ωcyc( j)

λl ≥ 1− y(I : { j})− ∑
l∈Ωcyc( j)

λl (4.25)

After multiplying the second equation by two, the left-hand side of both equations

coincide, and the following relationship holds between their right-hand sides

∑
l∈Ωcyc( j)

∑
e∈δ ({ j})

qe
l λl ≤ ∑

l∈Ωcyc( j)

2λl (4.26)

As ∑e∈δ ({ j}) qe
l ≥ 4 for l ∈ Ωcyc( j) (because j is traversed at least twice, i.e. by at

least 4 edges), it follows that λl = 0 for every l ∈Ωcyc( j).

4.3.2.3 Set-Partitioning SFCI (SP-SFCI)

Let us consider the SFCI constraints (4.11), and let S, I′ and S′ be as in (4.11). The

following strengthening of the SFCI, called Set-Partitioning SFCI (SP-SFCI), is valid

for the CLRP and dominates (4.11):

∑
k∈I\I′

λ ({l ∈Ωk : J(l)∩S 6= /0})+ y(I \ I′ : S\S′)≥ r(S, I′). (4.27)

Before proving the validity of the above constraint, let us define some notation. For

each i ∈ I, j ∈ S, let wi j be a binary constant equal to 1 iff customer j is served from
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facility i. Let WI′ = { j ∈ J : wi j = 1 for some i ∈ I′}. For given subsets H ⊆ I and S⊆ J,

let us define LH(S) = ∪i∈H{l ∈ Ωi : J(l)∩ S 6= /0}. Now, let us prove the validity of

constraints (4.27).

Proposition 4.3.3. Constraints (4.27) are valid for the CLRP and dominate the SFCI

(4.11).

Proof Let us consider first the case S′ = /0. Indeed, if S ⊆WI′ then constraint (4.27) is

trivially satisfied (because r(S, I′) = 0). If S ⊆W I′ then λ (LI′(S)) = y(I′ : S) = 0 and

therefore λ (LI\I′(S))+y(I \ I′ : S) = λ (LI(S))+y(I : S)≥ r(S)≥ r(S, I′). If S∩WI′ 6= /0

and S∩W I′ 6= /0, we have λ (LI\I′(S))+ y(I \ I′ : S) = λ (LI\I′(S∩WI′))+ y(I \ I′ : S∩
WI′)+λ (LI\I′(S∩W I′))+y(I \ I′ : S∩W I′)≥ r(S∩WI′, I′)+r(S∩W I′)≥ r(S, I′). Let us

suppose now that S′ 6= /0. Let S′′⊆ S′ be such that y(I\I′ : S′) = |S′′|, i.e., the customers in

S′ that are served by single-customer routes from facilities in I \ I′ are exactly those in S′′.

As a consequence of this, λ (LI\I′(S))= λ (LI\I′(S\S′′)) and then λ (LI\I′(S))+y(I\I′ :

S\S′) = λ (LI\I′(S\S′′))+y(I \ I′ : S\S′′)≥ r(S\S′′, I′) = r(S, I′). The dominance with

respect to constraints (4.11) comes from the fact that i) routes crossing set S several

times are only counted once, and ii) edges connecting S with S are considered only if

they belong to routes departing from I \ I′.

4.3.2.4 Set-Partitioning ESFCI (SP-ESFCI)

The Effective SFCI were introduced by Belenguer et al. [19] and Contardo et al. [36]

and are valid for the two-index formulation (TIF). They can be seen as a strengthening

of the SFCI by noticing that the right-hand side of such constraint can be in fact lifted

whenever zi = 0 for some i ∈ I′. For the set-partitioning formulation (SPF) they can be

written as

∑
k∈I\I′

λ ({l ∈Ωk : J(l)∩S 6= /0})+ y(I \ I′ : S\S′)≥ r(S, I′)+ zi(r(S, I′ \{i})− r(S, I′)).

(4.28)

The validity proof follows from the validity of the SP-SFCI for the two cases zi = 1

and zi = 0.
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4.3.2.5 Strengthened Framed Capacity Inequalities (SFrCI)

The framed capacity inequalities were developed by Augerat [8] for the CVRP and

later succesfully used by other authors in the development of algorithms based on cutting

planes and column generation [59, 101]. Given a customer set S, that we call the frame,

and a partition of it (Si)
t
i=1, the related FrCI seen in formulation (TIF) is

x(δ (S))+2y(I : S)+
t

∑
i=1

(x(δ (Si))+2y(I : Si))≥ 2

(
BPP(S|(Si)

t
i=1)+

t

∑
i=1

r(Si)

)
,

(4.29)

where BPP(S|(Si)
t
i=1) represents the solution of the following bin-packing problem. For

every i = 1, . . . , t consider dd(Si)/Qe items of size Q except for the last item that will

have size d(Si)− (dd(Si)/Qe− 1)Q. Also, set the bins to have size Q. In addition to

using identity (4.17) to adapt this constraint to formulation (SPF), the same observation

as done for the y-SCC, SDEG, SP-SFCI and SP-ESFCI can be applied. The following

constraint, called strengthened FrCI (SFrCI) is valid for the CLRP and also dominates

the FrCI.

λ ({l ∈Ω : J(l)∩S 6= /0})+
t

∑
i=1

λ ({l ∈Ω : J(l)∩Si 6= /0})+2y(I : S)≥

BPP(S|(Si)
t
i=1)+

t

∑
i=1

r(Si). (4.30)

Before proving the validity of the SFrCI we need the following lemma

Lemma 4.3.4 (Augerat [8]). Let S⊆ J and (Si)
t
i=1 a partition of S. If dd(S1∪S2)/Qe=

dd(S1)/Qe+ dd(S2)/Qe then BPP(S|S1,S2, . . . ,St)≥ BPP(S|S1∪S2,S3, . . . ,St). Other-

wise BPP(S|S1,S2, . . . ,St)+1≥ BPP(S|S1∪S2,S3, . . . ,St).

Proof See Augerat [8].

Proposition 4.3.5. Constraints (4.30) are valid for (SPF).
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Proof The proof uses exactly the same arguments as in Augerat [8]. Let us suppose first

that sets Si satisfy d(Si) ≤ Q. Let us consider the bin-packing problem defined above,

with objects of sizes d(Si) for every i = 1, . . . , t and bin size equal to Q. Let us denote

the set of objects by K. In this context, let us call a cut of object k in K the following

operation: remove k (of size d(k)) from K and replace it by two smaller objects whose

total size is equal to d(k). It is known that after a cut operation, the solution of a BPP is

reduced by at most one unit. As a consequence, the same applies for q cut operations,

so that the solution of the BPP is reduced by at most q units. In the case of the CLRP,

the quantity w = ∑
t
i=1(λ ({l ∈ Ω : J(l)∩ Si 6= /0})+ y(I : Si)− 1) represents exactly the

number of cuts that are applied to the set S, and thus BPP(S|(Si)
t
i=1)+w represents a

lower bound on the number of vehicles needed to serve the demand of S. Now, in the

general case, let (λ ,y,z) be a solution of (SPF). For every subset Si, (λ ,y) define a

partition Sk
i ,k = 1, . . .ni of subsets of Si such that i) λ ({l ∈ Ω : J(l)∩ Sk

i 6= /0})+ y(I :

Sk
i ) = 1 and ii) ni = λ ({l ∈Ω : J(l)∩Si 6= /0})+y(I : Si). From the first case we have that

λ ({l ∈ Ω : J(l)∩ S 6= /0})+ y(I : S) ≥ BPP(S|(Sk
1)

n1
k=1,(S

k
2)

n2
k=1, . . . ,(S

k
t )

nt
k=1). For every

i = 1, . . . , t we apply ni successive contractions of the subsets Sk
i and compute α(i, j)

equal to the number of times that BPP(S|(Sk
1)

n1
k=1,(S

k
2)

n2
k=1, . . . ,(S

k
t )

nt
k=1) decreases by one

unit after a contraction. By applying the lemma, we have that α(i,1) = dd(S1
i )/Qe+

dd(S2
i )/Qe− dd(S1

i ∪ S2
i )/Qe = 2−dd(S1

i ∪ S2
i )/Qe and, more generally, α(i, j) = j+

1−dd(
⋃ j

k=1 Sk
i )/Qe. At the end of all of these successive contractions we will have that

λ ({l ∈Ω : J(l)∩S 6= /0})+ y(I : S)≥ BPP(S|(Si)
t
i=1)−∑

t
i=1(ni−dd(Si)/Qe)

4.3.2.6 Subset-Row Inequalities (SRI, Jepsen et al. [80])

The subset-row inequalities are a special case of the clique inequalities [11] and are

valid for the set partitioning formulation of the CLRP. Let us consider the conflict graph

Hλ constructed as follows. The vertices of Hλ are the routes l ∈ Ω such that λl > 0.

Two vertices in V (Hλ ) are linked by an edge if they share at least one customer. A clique

in Hλ is a maximal complete induced subgraph of Hλ . For every clique C ⊆Hλ , the
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following clique inequality is valid for the CLRP:

∑
v∈V (C )

λv ≤ 1. (4.31)

The addition of clique inequalities into the master problem SPF has, however, an

important drawback: they make the pricing problem of finding routes (with or without

cycles) of negative reduced cost much more difficult. Indeed, during the pricing problem

it must be checked if a partial path participates or not in a clique. This is equivalent to

checking if a partial path intersects every column already in a clique in at least one

customer node, which in practice is difficult to do. Jepsen et al. [80] introduced the

subset-row inequalities. A subset-row inequality is a clique inequality associated to a

clique C to which we assign a subset of customers χ(C ) ⊆ J such that every column

in C intersects χ(C ) in at least a certain number of customers. If |χ(C )| is small, the

pricing problem can be accelerated as only |χ(C )| comparisons are needed to check if a

given path participates in the clique. These inequalities are a particular case of the clique

inequalities and in general provide slightly weaker bounds. The results obtained by

Jepsen et al. [80] for the particular case of |χ(C )|= 3 show that the gain for considering

the clique inequalities instead of the subset-row inequalities is usually not worth the extra

computational effort.

4.4 Solution Methodology

In this section we describe the exact algorithm that solves the CLRP to optimality.

We first describe the separation algorithms used in order to find violated inequalities.

Then, we describe two bounding procedures that are applied sequentially. The first pro-

cedure is based on the two-index formulaton (TIF) with additional cuts. The second

procedure is based on the set partitioning formulation (SPF) with additional cuts. We

then describe an enumeration procedure to close the optimality gap that is applied only

in certain cases. Finally, we describe the computational issues in the implementation of

the proposed algorithm.



98

4.4.1 Separation Algorithms

We now describe the separation algorithms used to separate the different families of

valid inequalities used in our algorithm. Our separation strategy is as follows: we first

try to generate cuts translated from the two-index formulation (TIF). If no such cuts can

be found, we try to generate cuts SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI. If it

fails, we try to generate cuts SRI. This strategy allows us to keep the number of strong

constraints small as their inclusion in the pricing algorithm make it harder.

4.4.1.1 Inequalities translated from formulation TIF

For the valid inequalities translated from the two-index formulation using identity

(4.17), such as y-CC, SFCI, ESFCI, SCI, LR-CI or FrCI, we use the separation algo-

rithms introduced by Lysgaard et al. [101], Belenguer et al. [19] and Contardo et al.

[36].

4.4.1.2 SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI

Although there is a polynomial number of SDEG constraints, we do not add them

all at the beginning of the algorithm, but we rather check if for a certain weak degree

constraint, its related strong constraint is violated, and add it to the problem. For the

remaining constraints, we use the same principle. In fact, we check if, for any previ-

ously found weak constraint y-CC, SFCI, ESFCI or FrCI, its related strong constraint is

violated and in this case we add it to formulation SPF.

4.4.1.3 Subset-Row Inequalities

The separation of the subset-row inequalities is done by enumeration just as in Jepsen

et al. [80]. Indeed, we only separate SRI for cliques C such that |χ(C)| = 3. We check

for every triplet (i, j,k) ∈ J3, i < j < k if the corresponding SRI is violated. If it is the

case, it is added to the master problem.
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4.4.2 First bounding procedure

In this procedure, an enumeration method based on a branch-and-cut algorithm [36]

is applied to problem (TIF) after dropping the integrality constraints on the edge vari-

ables x and y. This procedure is used to obtain candidate subsets I′ ⊆ I of facilities such

that the problem restricted to these facilities could lead to a feasible solution with cost

smaller or equal than a given upper bound. We denote the set that contains the subsets

I′ by I . For finding the subsets in I , a good upper bound is needed to prune nodes in

the branching tree. In our method, we have used the best feasible solutions found in the

literature. For large instances, however, the computation of the whole branching tree can

be prohibitive. In this case, the branch-and-bound algorithm is terminated earlier and

the uninspected nodes are also added to I . Now, the facilities in a given subset I′ ∈I

are not only those that are open but also those that could not be fixed in the current node.

During the process, different families of valid inequalities are added to strengthen the

formulation. However, we only add cuts in nodes whose depth is less than or equal to 5.

For each candidate set I′ ⊆ I generated by the algorithm we proceed as follows:

i. Based on reduced costs, perform variable fixing on the location variables z, in case

set I′ contains facilities that remained unfixed.

ii. Based on reduced costs, perform variable fixing on the edge variables x.

iii. Compute the optimal dual variables associated to the degree constraints (4.1).

iv. Compute Km(I′) as an upper bound on the maximum number of routes that serve

two or more customers, namely Km(I′) = bmax{1
2x(δ (I′)) : (x,y,z) ∈A }c, where

A stands for the set of constraints (4.1)-(4.9) plus the generated cuts and after

dropping the integrality conditions.

For each subset I′ found by this algorithm we apply a second bounding procedure

and a column enumeration method (in this context, the definition of set I′ is implicit

and will sometimes be omitted). Note that Baldacci et al. [16] use a similar approach,

except that their first bounding procedure computes a global lower bound obtained by

solving a relaxation of the set-partitioning problem. This bound is then used to discard

non promising subsets I′ ⊆ I. In Section 4.5 we present computational results comparing
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the first bounding procedure that we propose with the one suggested by Baldacci et al.

[16].

4.4.3 Second bounding procedure

In this procedure, the following state-space relaxation of formulation (SPF) is solved

by means of column generation. Instead of considering elementary routes (i.e., routes

without cycles), we allow routes that contain cycles of length three or more, i.e., for

nodes i 6= j 6= k 6= i the subpaths i→ i, i→ j→ i are forbidden, but the sequence i→
j→ k→ i is permitted. The pricing problem consists in finding routes without cycles

of length one or two and such that the reduced costs are minimized. This problem is

known in the literature as the 2-cyc-SPPRC [50]. This is an important difference with

respect to the method of Baldacci et al. [16] in which the resolution of the subproblem

is restricted to elementary routes. During the computation, we add the cuts described

in Section 4.3. The violation threshold for the strong cuts is initially set to 0.3. When

no more columns of negative reduced cost or violated cuts can be detected, the current

objective function value is in fact a valid lower bound for the problem. Let us call this

lower bound z∗. We run algorithm ENUM-ESPPRC (described in the next section) in

order to price out the remaining columns l ∈ Ω such that cl ≤ zUB− z∗. We have set

two hard limits to algorithm ENUM-ESPPRC: the number of labels cannot exceed at

any time a maximum φmax = 106, and the total number of generated columns cannot

exceed ∆max = 107. In case of success of this procedure, the columns generated are

stored in a column pool P and the violation threshold for strong constraints is lowered

to 0.01. Otherwise, we lower the violation threshold (thus generating more cuts) and

continue with the process. This is done at most three times before finishing the column

generation process. For instance, for the case of constraints SDEG, the sequence of

violation thresholds is (0.3,0.25,0.2,0.1). Whenever the column enumeration ENUM-

ESPPRC is done with success, at every following iteration of the column generation

method, we do not solve the pricing problem 2-cyc-SPPRC but rather check the reduced

costs of columns in P . Note that the size of set P can be huge and computing the

reduced cost of every column in it can be very cumbersome. For dealing with this issue,



101

at every iteration after the creation of P in which no columns of negative reduced cost

were found, we also delete from the pool all the columns l such that cl > zUB−z∗. At the

very end of the bounding procedure, we either prune the current node if the final lower

bound is greater than or equal to zUB, or otherwise solve the integer problem with the

columns generated so far, with the hope of improving the upper bound. In what follows,

we first describe the decomposition of the reduced costs for the constraints translated

from formulation (TIF), namely all of the constraints in (SPF) plus the cuts that are valid

for this formulation. We then show how to incorporate the set-partitioning constraints,

such as y-SCC, SDEG, SP-SFCI, SP-ESFCI, SFrCI and SRI into the computation of

the reduced costs. We then describe the pricing problem 2-cyc-SPPRC that suits our

problem with the additional cuts. We end by describing how we compute lower bounds

out of the result of the pricing problem.

4.4.3.1 Decomposition of the reduced costs edge-by-edge

Let us first suppose that only constraints (4.12), (4.13) (with duals α and β , respec-

tively) have been added to the problem. For every i ∈ I′, define the reduced cost of an

edge e ∈ E(J)∪δ ({i}) as

ce =

ce− (αh +α j)− (dh +d j)βi if e = {h, j} ∈ E(J)

ce−α j−d jβi if e = {i, j} ∈ δ ({i}).
(4.32)

Let us write a route l ∈ Ωi like a sequence of edges in E, that is l = (et)
p
t=1 (in the

case in which cycles are permitted, edges may appear more than once in the sequence).

Thus, the reduced cost of such a route is given by the following expression:

cl =
p

∑
t=1

cet . (4.33)

It follows that in this case a column of minimum reduced cost can be computed as the

solution of |I′| shortest path problems with resource constraints. Moreover, the addition
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of any cut of the general form

∑
i∈I′

τizi + ∑
e∈E

∑
l∈Ω

qe
l φeλl + ∑

e∈δ (I′)
ςeye ≤ π (4.34)

produces a contribution to the computation of the reduced cost of the columns that can

still be decomposed by edge, thus without breaking the shortest path structure of the

pricing. This is the case for all of the cuts valid for the two-index formulation of the

CLRP after being translated to formulation (SPF) using identity (4.17).

4.4.3.2 Addition of the strong constraints and effect on the reduced costs

When a constraint cannot be written edge-by-edge, as for constraints (4.21), (4.23),

(4.27), (4.28), (4.30) or (4.31), the contribution to the reduced cost cannot be decom-

posed edge by edge, and thus the original structure of the SPPRC is broken.

Indeed, consider a SRI for a clique C such that for χ(C) = {i, j,k} with dual variable

σ ≤ 0. The reduced cost c̄l of a route l ∈ Ω that crosses at least two of those three

customers must be augmented by −σ units.

For the other strong constraints SDEG, y-SCC, SP-SFCI, SP-ESFCI or SFrCI, the

contribution to the reduced cost is related to the simple intersection of path l with the

sets describing the constraints. For instance, if we consider a SDEG constraint associated

to a customer j and with dual variable σ ≥ 0, then the reduced cost of a route l will be

reduced by σ units if l passes through node j. Now, consider a constraint y-SCC for

given sets S ⊆ J and S′ ⊂ S as in (4.21) with dual value σ ≥ 0. The contribution to the

reduced cost will reduce it by σ units if l intersects set S. For a SP-SFCI or SP-ESFCI

associated to sets S ⊂ J, S′ ⊂ S, I′ with dual variable σ ≥ 0, the contribution to the

reduced cost will reduce it by σ units if route l crosses set S but is not linked to a facility

in I′. Finally, for the SFrCI associated to set S and partition Si, i = 1, . . . , t and with dual

variable σ ≥ 0, the reduced cost must be reduced by σ units once for each time that

route l intersects either S or any of its subsets.
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4.4.3.3 The pricing problem

The pricing problem corresponds to solve |I′| 2-cyc-SPPRC, one for each facility in

I′. The resources associated to each label during the recursion are 1) vehicle load, 2)

binary resources related to constraints SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI

and 3) resources for taking into account the SRI. The algorithm used to solve these

problems is based on dynamic programming (DP), as was done by several authors [14,

50, 56, 80, 128]. Moreover, it is also possible to solve it by means of bidirectional DP

(BDP). In classical uni-directional DP, paths are extended until reaching the depot node

while ensuring that loads do not exceed capacity. In BDP, however, paths are extended

until reaching half of the capacity for later joining paths pairwise. In this section we

describe the 2-cyc-SPPRC algorithm used in the context of the CLRP. For general use

of the dynamic programming method for solving the SPPRC we refer to the papers cited

above. Let us denote by V (L) the set of nodes served by the path represented by label L.

4.4.3.3.1 Resources description As said before, three different types of resources

are considered in the problem: vehicle load resource; resources associated to constraints

SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI; and resources associated to SRI.

Vehicle load The vehicle load is defined by an integer variable q that keeps track of

the load of the current path. It is updated every time that a path is extended to a

customer node.

Resources associated to SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI For each of

the constraints SDEG, y-SCC, SP-SFCI and SP-ESFCI, the associated resource is

defined by a single boolean variable that takes the value true if the path intersects

the proper set as described before. We designate those sets as critical sets, and

denote them by S(C) for every constraint C. For each constraint SFrCI, there will

be not one, but as many boolean variables as the size of the partition, plus one for

the frame. Each of these variables will take the value true if the path crosses the

proper set. Now, we do not have one but several critical sets that we denote by

S(C,k). Any time that one of these boolean variables passes from false to true,



104

the reduced cost of the current path is reduced according to the value of the dual

variable.

Resources associated to SRI For every clique C with χ(C) = {i, j,k} we associate

three binary variables rC(k),k = 1,2,3 that are initialized to 0 until the path crosses

one of the customers, in which case the proper variable is set to 1, and the reduced

cost of a path will be updated whenever rC(1)+ rC(2)+ rC(3) reaches the value 2.

4.4.3.3.2 The 2-cyc-SPPRC algorithm We first describe the definition of a label in

the recursion of the dynamic programming algorithm. Then, we describe the dominance

rules used to discard labels. After that, we describe a fathoming rule that can be aplied in

order to also discard labels that cannot lead to a column of negative reduced cost. Next,

we describe the path joining procedure to construct feasible paths from a given pair of

labels. At the end, we describe the skeleton of the algorithm.

Label definition A label L is defined by

i. A node v(L) which is the end node of the path represented by label L.

ii. A cost c(L) representing the reduced cost of the path represented by label L.

iii. A load resource q(L) representing the load of the path represented by label

L.

iv. Resources resC(L) associated to the binding constraints SDEG, y-SCC, SP-

SFCI, SP-ESFCI, SFrCI and SRI. For constraints SFrCI and SRI we write

resC(L,k) for the different sub-resources associated to these constraints.

v. An integer variable vdom(L) initially set to -1 and updated whenever L is

found to be dominated by a label L′, in which case we set vdom(L)= v(pred(L′)).

vi. A boolean variable proc(L) initialized to false and updated to true whenever

the algorithm processes the label and inspects its neighbors.

vii. A pointer to the predecessor label pred(L) of L.

viii. A list succ(L) of pointers to the successors of L. succi(L) denotes the i-th

successor of label L.
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Dominance rule Let L,L′ be two labels. We denote SRILL′ = {C ∈ SRI : ∑k resC(L,k)≤
1 and [∑k resC(L′,k)≥ 2 or ∃ k s.t. resC(L,k)< resC(L′,k)]}, nC,L,L′ = |{k : resC(L,k)<

resC(L′,k)}| and OTHL,L′ = {C∈SDEG∪y-SCC∪SP-SFCI∪SP-ESFCI : resC(L)<

resC(L′)}. We will say that L is dominated by L′ if

i. v(L) = v(L′).

ii. q(L)≥ q(L′).

iii. c(L)≥ c(L′)−∑C∈SRILL′
σC +∑C∈SFrCI nC,L,L′σC +∑C∈OTHLL′

σC.

The dominance rule is a direct application of the one used by Archetti et al. [7]

for the inclusion of SRI and k-path inequalities in the context of the VRP with

split deliveries and time windows (VRPSDTW). A label L that is dominated by

another label L′ cannot be directly eliminated unless v(pred(L)) = v(pred(L′))

or if vdom(L) /∈ {−1,v(pred(L′))}. In that case, label L is removed and recur-

sively we also remove all of its successors in succ(L). Otherwise, vdom(L) is set

to v(pred(L′)). Note that the inclusion of SDEG constraints allows to weaken the

dominance rule with respect to a traditional elementarity constraint, in which the

condition for dominance would be resC(L)≥ resC(L′) for each C ∈ SDEG.

Fathoming rule In addition to the dominance criterion, a fathoming rule can be applied

if a lower bound on the cost of extending a path can be computed. Formally,

let L be a label and let LB(L) be a lower bound on the reduced cost that can

be obtained by extending L, computed as follows. First of all, discard SRI as

their dual variables are negative. For every binding strong constraint C ∈ C =

SDEG∪y-SCC∪SP-SFCI∪SP-ESFCI∪SFrCI, with dual variables (σC)C∈C , and

for every edge e crossing the critical sets related to these constraints, we decrease

the reduced cost of that edge by σC/2 units. We refer to this procedure as under-

estimation of constraint C. As a route that crosses a customer set S must have at

least two edges in δ (S) then the reduced cost of a path computed in this way will

in fact be a lower bound on the real reduced cost. We then solve the related 2-cyc-

SPPRC with no resources associated to strong constraints, and compute functions

f ,g and π as follows:
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f (p, i) = min{c(L) : v(L) = i,q(L)≤ Q− p+di} (4.35)

π(p, i) = v(pred(argmin{ f (p, i)})) (4.36)

g(p, i) = min{c(L) : v(L) = i,q(L)≤ Q− p+di,v(pred(L)) 6= π(p, i)} (4.37)

For a constraint C ∈ SFrCI and a customer i∈ J, let nC,i = |{k : i∈ S(C,k)}|. Also,

let

h(L) =

 f (q(L),v(L)) if π(q(L),v(L)) 6= v(pred(L))

g(q(L),v(L)) otherwise.

.

A lower bound on the reduced cost reachable by extending label L can be com-

puted as

LB(L) = c(L)+h(L)+
1
2 ∑

C∈C \SFrCI
i∈S(C)

σC +
1
2 ∑

C∈SFrCI
nC,iσC. (4.38)

The two sums aim to compensate the fact that the contribution of the under-

estimated constraints C ∈ C is being considered at least 1.5 times in c(L) and

h(L) whenever i ∈ S(C) or nC,i > 0, thus tightening LB(L). If a label L is such that

LB(L) > 0, then L can be discarded. Similar fathoming rules have been imple-

mented by Baldacci et al. [14, 15], Christofides et al. [32] and Baldacci et al. [16],

for instance. Note that we have used unidirectional DP for computing functions

f ,g,π . From an implementation point of view, it only differs from the BDP in the

fact that now all labels are inspected for extension and not only those whose load

is less or equal than Q/2, so at the end the joining of paths is not necessary. Note

also that this fathoming procedure can be generalized (and also strengthened) by

keeping as resources, thus without under-estimating, the k constraints C ∈ C with

the largest duals, where k is a parameter defined a priori. After doing a series of

experiments, we let k = min{20, |C |/5}. For these constraints, the coefficients in
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the sums in (4.38) can now be lifted to 1, as the contribution to the reduced cost of

a customer such that i ∈ S(C) or nC,i > 0 is being counted twice.

Path joining As the labeling algorithm is bidirectional, the labels must be joined to

construct feasible paths. Given two labels L,L′ such that v(L) = v(L′) and q(L)+

q(L′) ≤ Q+ dv(L), they will produce a feasible path (one that satisfies capacity

constraints and such that its reduced cost is negative) if

i. min{q(L),q(L′)} ≥ q(L)+q(L′)−dv(L)
2

ii. max{q(L),q(L′)} ≤ q(L)+q(L′)+dv(L)
2

iii. v(pred(L))< v(pred(L′))

iv. the reduced cost of the concatenated path P = (L,L′) is negative.

The first two conditions are the median conditions [14] that ensure that labels L

and L′ are the closest possible to half of the load. The third condition ensures

that if path P = (L,L′) is kept, then path P′ = (L′,L) will be discarded. This way,

symmetric or repeated paths will not be added to the master problem.

The dynamic programming algorithm Let us describe the labeling algorithm by means

of a pseudo-code. Let L0 be the label representing an empty path starting at the fa-

cility, such that all of the resources are set at their default values. Also, let us note

that labels will be stored in buckets, and let B(q,v) be the bucket storing labels L

whose loads are q(L) = q and such that v(L) = v.
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Algorithm 4.1 2-cyc-SPPRC
1: Compute functions f ,g,π using DP.

2: B(0,0)←{L0},V ←{0},R← /0.

3: repeat

4: Take node v from V and set V ← V \{v}.
5: for q = 0 to Q/2 do

6: for all L ∈ B(q,v) such that proc(L) = false do

7: Set proc(L)← true.

8: for all w ∈ Neighbors of v, w 6= 0 and q(L)+dw ≤ Q and pred(L) 6= w do

9: Create L′ such that v(L′) = w and pred(L′) = L. Update resources accordingly.

10: Apply fathoming rule and eventually discard L′.

11: Apply dominance rule and eventually discard L′.

12: if L′ has not been discarded then

13: Make B(q(L′),w)← B(q(L′),w)∪{L′}.
14: Apply dominance rule and eventually delete other labels in B(q(L′),w).

15: Make V ← V ∪{w}.
16: end if

17: end for

18: end for

19: end for

20: until V = /0

21: Join paths {(L,L′) : v(L) = v(L′) = v,q(L)+q(L′)≤ Q+dv} and fill R

22: return R

4.4.3.4 Computing lower bounds

When pricing problems are solved to optimality, it is possible to obtain a lower bound

on the problem. This lower bound can then be used for fathoming the current node

as well as for early termination criteria. The following proposition provides a way of

computing a lower bound on the CLRP.

Proposition 4.4.1. Let c̄min be the minimum reduced cost at the current iteration for

columns in Ω, and let z̄ be the value of the master problem at the current iteration. Also,

let Kmax be an upper bound on the number of vehicles that serve two or more customers.



109

A valid lower bound for the CLRP is given by

zLB = z̄+Kmaxc̄min. (4.39)

Proof Let σ be the dual variables of the linear relaxation of problem (SPF). Let (c̄l)l∈Ω

be the reduced costs of columns serving two or more customers, that depend on the

duals σ . The Lagrangean dual of this problem, that can be written in the following form,

provides a valid lower bound for the CLRP

L(σ) = z̄+min{∑
l∈Ω

c̄lλl : ∑
l∈Ω

λl ≤ Kmax}. (4.40)

But now, as c̄min ≤ 0 then min{∑l∈Ω c̄lλl : ∑l∈Ω λl ≤ Kmax} ≤ Kmaxc̄min.

For every candidate set I′ we use Kmax = Km(I′) as described in the first bounding

procedure.

4.4.4 Enumeration of remaining columns

For each subset of facilities I′ as obtained after the first bounding procedure and not

discarded after the second procedure, let zLB and σ be the lower bound at the end of

the second bounding procedure and the dual variables associated to such lower bound.

If procedure ENUM-ESPPRC was successful to generate the column set P , we simply

compute the reduced cost of columns in P and add to the master problem those columns

l such that cl < zUB− zLB. We then solve the resulting integer problem using a general-

purpose solver such as CPLEX. If, however, we were not able to obtain set P , we first

check whether the upper bound zUB improved during the second bounding procedure

after the consideration of set I′. In this case, we run again algorithm ENUM-ESPPRC but

now with the updated upper bound, as the performance of algorithm ENUM-ESPPRC

depends strongly on the gap zUB−zLB. Otherwise, we start the following procedure with

the hope of getting a better upper bound (if any), and in the worst case it gives us a

method for tightening the gap.

i. Let ∆← (zUB− zLB)/10. Set k← 1.
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ii. Let z′UB← zLB+k∆ and try to generate all of the columns whose reduced costs are

smaller or equal than k∆. If more than ∆max = 106 columns are found or if we run

out of memory, we exit. Otherwise we go to step (iii).

iii. Solve the resulting integer problem to optimality. If a new upper bound was found

with value z∗ < zUB, set zUB ← z∗ and zLB ← min{zUB,z′UB}. If zLB = z′UB then

exit. Otherwise, if either z′UB < z∗ or the problem was solved to optimality but no

integer solution was found with value less than zUB, set zLB = z′UB. If k < 10 do

k← k+1 and go back to (ii).

This method generalizes the one proposed by Baldacci et al. [16] by artificially low-

ering the optimality gap and iteratively increasing it, thus reducing the negative impact

of an initial upper bound of poor quality. Let us describe the algorithm for solving the

column enumeration problem. This algorithm is a variation of the Elementary SPPRC

(ESPPRC) and we call it ENUM-ESPPRC.

4.4.4.1 The column enumeration algorithm

Algorithm ENUM-ESPPRC is based on the solution of the ESPPRC, and so as the

2-cyc-SPPRC, is solved by means of bidirectional dynamic programming. The method

presented in this paper differs from the one proposed by Baldacci et al. [16] mainly in

the fathoming rule that considers the inclusion of the strong constraints in the value of

the completion bound for a given path label. As for the description of the 2-cyc-SPPRC,

we first describe the definition of a label in the recursion of the dynamic programming

algorithm. Then, we describe the dominance rules used to discard labels. After that, we

describe a fathoming rule that can be applied in order to also discard labels that cannot

lead to a column of reduced cost smaller than a desired threshold. Next, we describe the

path joining procedure to build feasible paths from a given pair of labels. At the end, we

describe the skeleton of the algorithm.

Label definition We define a label L containing the same information as for the 2-cyc-

SPPRC algorithm plus

i. A cost c(L) representing the cost of the path represented by label L.
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ii. Additional resources associated to nodes. For every customer j ∈ J we asso-

ciate a boolean variable res j(L) equal to true if j ∈V (L), 0 otherwise.

Dominance rule Given two labels L, L′, we say that L is dominated by L′ if

i. v(L) = v(L′)

ii. V (L) =V (L′)

iii. c(L)≥ c(L′)

Now, dominance is done with respect to the costs instead of the reduced costs. A

Label L that is found to be dominated by another label L′ is removed, and recur-

sively also all of its successors.

Fathoming rule A similar fathoming rule as the one used for the 2-cyc-SPPRC can be

applied. Indeed, it only differs from the one used for the 2-cyc-SPPRC in the

parameter k for the number of non under-estimated constraints that is set to k =

|C |. Thus, a lower bound LB(L) on the reduced cost of a label L after extending it

is given by

LB(L) = c(L)+h(L)+ ∑
C∈C \SFrCI

i∈S(C)

σC + ∑
C∈SFrCI

nC,iσC, (4.41)

where h(L), σC and nC,i are as defined for the fathoming rule of the 2-cyc-SPPRC.

Now, a label L will be discarded if LB(L)≥ zUB− zLB.

Path joining A similar joining procedure can be applied to algorithm ENUM-ESPPRC

as with the 2-cyc-SPPRC, with the main difference that now cycles are not allowed

at all. Given two labels L,L′ such that v(L) = v(L′) and q(L)+q(L′)≤ Q+dv(L),

they will produce a feasible path (one that satisfies capacity constraints and such

that its reduced cost is smaller than the desired threshold) if

i. min{q(L),q(L′)} ≥ q(L)+q(L′)−dv(L)
2

ii. max{q(L),q(L′)} ≤ q(L)+q(L′)+dv(L)
2

iii. v(pred(L))< v(pred(L′))
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iv. V (L)∩V (L′) = {0,v(L)}

v. the reduced cost of the concatenated path P = (L,L′) is smaller than zUB−
zLB.

Now, condition (iv) ensures that paths L,L′ only share the facility and the joining

node.

The dynamic programming algorithm Let us describe the labeling algorithm by means

of a pseudo-code. Just as before, label L0 represents an empty path starting at the

facility, such that all of the resources are set at their default values. Labels will

be stored in buckets, and let B(q,v) be the bucket storing labels L whose loads are

q(L) = q and such that v(L) = v.

Algorithm 4.2 ENUM-ESPPRC
1: Compute functions f ,g,π using DP.

2: B(0,0)←{L0},V ←{0},R← /0

3: repeat

4: Take node v from V and set V ← V \{v}
5: for q = 0 to Q/2 do

6: for all L ∈ B(q,v) such that proc(L) = false do

7: Set proc(L)← true.

8: for all w ∈ Neighbors of v, w 6= 0 and q(L)+dw ≤ Q and w /∈V (L) do

9: Create L′ such that v(L′) = w and pred(L′) = L. Update resources accordingly.

10: Apply fathoming rule and eventually discard L′.

11: Apply dominance rule and eventually discard L′.

12: if L′ has not been discarded then

13: Make B(q(L′),w)← B(q(L′),w)∪{L′}.
14: Apply dominance rule and eventually delete other labels in B(q(L′),w).

15: Make V ← V ∪{w}.
16: end if

17: end for

18: end for

19: end for

20: until V = /0

21: Join paths {(L,L′) : v(L) = v(L′) = v,q(L)+q(L′)≤ Q+dv} and fill R.

22: return R
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4.4.5 Computational issues

We now make some observations that can help to accelerate the algorithm.

4.4.5.1 Initial set of columns

An initial set of columns is required in column generation algorithms. Indeed, at

every iteration of the CG, a feasible solution of the master problem is needed for running

the pricing algorithms. In our algorithm, we let the initial set of columns contain only

the single-customer variables y. Additionally, we also add slack and artificial variables

to the formulation so the problem will always have a feasible solution.

4.4.5.2 Stabilization of the column generation

With the aim of reducing the oscillation of the dual variables during the first iterations

of the column generation process, we use a box-pen method [53] for stabilizing the duals

of the degree constraints (4.12). For every set I′ ∈I , the centers are initially set to the

optimal dual variables of the degree constraints (4.1) after performing the first bounding

procedure.

4.4.5.3 Column pool management

For some instances, the quantity of columns added can be huge and, moreover, most

of them will be useless. In fact, it is known that at the beginning of the column generation

process, many columns are generated that soon will become non-basic for the rest of the

algorithm. We keep a pool of columns and keep track of the number of consecutive

iterations that columns have been non-basic. Every 30 iterations we check and delete all

columns having been inactive for more than 30 iterations. Note that after the creation

of set P during the second bounding procedure, the columns deleted from the problem

must be inserted back into P .
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4.4.5.4 Memory management

The dynamic programming algorithms can be very demanding in terms of memory.

In fact, every new created label needs to be allocated in memory. In this context, the

new and delete operators of C++ (or malloc and free operators in the case of C) can be

very inefficient. We have decided to manage our own memory pool, in which dynamic

memory is allocated in chunks of 400 MB. The newly created labels are thus allocated

inside the previously allocated memory.

4.5 Computational Experience

We have run our method on an Intel Xeon E5462, 3.0 Ghz processor with 16GB of

memory. The code was compiled with the Intel C++ compiler v11.0 and executed on

Linux, kernel 2.6. Linear and integer programs were solved by CPLEX 12.2. The pric-

ing algorithms 2-cyc-SPPRC and ENUM-ESPPRC have been coded in C++ using the

same compiler as before. The algorithm has been tested over five sets of instances from

the literature, containing in total 71 instances. The first family (F1) has been adapted

by Barreto [18] from other vehicle routing problems in the literature and contains 16

instances with capacitated vehicles and facilities. The second set of instances (F2) has

been developed by Prodhon [123] and contains 30 instances with capacitated vehicles

and facilities. The third set of instances (F3) has been introduced by Akca et al. [4]

and contains 12 instances with capacitated vehicles and facilities. The fourth set of in-

stances (F4) has been introduced by Tuzun and Burke [142] and contains 9 instances

with capacitated vehicles and uncapacitated facilities. The fifth and last set of instances

(F5) has been introduced by Baldacci et al. [16] and contains 4 instances with capac-

itated vehicles and uncapacitated facilities. The dimensions of the instances vary from

very small instances with 12 customers and 2 facilities up to very large instances with

199 customers and 14 facilities. We compare our results against those obtained by other

exact algorithms, namely the methods of Belenguer et al. [19], Contardo et al. [36] and

Baldacci et al. [16]. We use as upper bound the best solution available in the literature

for every instance. In Tables 4.I-4.V we present the detailed results obtained by our al-
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gorithm for every instance and for each of the three bounding procedures. The columns

in these tables are as follows:

i. Instance: name of the instance.

ii. zUB: objective function value of the best feasible solution available in the literature.

iii. z∗: objective function value of the best feasible solution found by our algorithm.

The text in bold characters indicates that this value is strictly lower than the one in

column labeled zUB.

iv. gap1, t1: gap obtained and CPU time taken by the first bounding procedure. The

gap is computed as follows: (z∗− zLB1)/z∗×100.

v. gap2, t2: gap obtained and CPU time taken by the second bounding procedure.

vi. gap3, t3: gap obtained and CPU time taken by the column enumeration procedure.

vii. |I |: number of subsets obtained by the first bounding procedure.

viii. |R1,2|: maximum number of columns found by the procedure ENUM-ESPPRC

after the second bounding procedure and the final enumeration step, respectively.

This maximum is taken over all subsets I′ ⊆I .

ix. t: overall CPU time.

As shown in these tables, our algorithm is capable of solving 58 out of the 71 in-

stances considered. Moreover, all instances of families F1 and F3 (28 in total) are

solved to optimality, and for none of them was procedure ENUM-ESPPRC called dur-

ing the third bounding procedure. Finally, instances Chr-75x10ba, ppw-50x5-2b, ppw-

100x5-2b and ppw-200x10-3a were solved to optimality for the first time, and we have

improved the best feasible solution for three more instances (ppw-100x5-0b, P113112

and P131112). As a matter of fact, our method is able to solve all instances with 85

customers or less.

We first compare our method against the branch-and-cut algorithms of Belenguer

et al. [19] and of Contardo et al. [36]. In Tables 4.VI-4.VIII we establish the gaps and

CPU times obtained by every algorithm on three sets of instances. In these tables, head-

ers BBPPW, CCG-BC and CCG-BCP stand for the methods of Belenguer et al. [19],
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Contardo et al. [36] and this work, respectively. In the case of method CCG-BC we con-

sider the branch-and-cut algorithm with the two-index vehicle-flow formulation of the

problem. In the case of the branch-and-cut algorithms, columns labeled gaplr, tlr,gap

and t stand for the gaps and CPU times for the root node relaxation and after the whole

branching tree (with a maximum CPU time of 2 hours). In the case of method CCG-

BCP, columns gap1, t1 stand for the gap obtained after the first bounding procedure,

and columns labeled gap, t stand for the final gap and the total CPU time spent by the

method. We highlight in bold characters whenever a method dominates the other two in

terms of bound quality. First of all, the first bounding procedure produces better bounds

than the flow-based algorithms at the root node. This is not surprising since this pro-

cedure uses the code of CCG-BC for doing a partial branch-and-bound on the location

variables. At the end, our method is able to produce tighter gaps than the other two.

Although a CPU-based comparison can be difficult (because each algorithm was run on

different machines), it is worth noting that our method was some orders of magnitude

faster on the instances of family F3 (Table 4.VIII). Moreover, we can solve 48 of the

considered instances, 20 more than BBPPW and 18 more than CCG-BC.

Finally, we compare the proposed methodology against the column generation method

of Baldacci et al. [16]. In Tables 4.IX-4.XII we compare the three bounding procedures

introduced in this paper against the similar bounds used in the method of Baldacci et al.

[16]. Note that, although the second and third bounding procedures in both methods

are very similar, the first bounding used by Baldacci et al. [16] is a relaxation of the

set-partitioning formulation, while in our case it is based on the two-index vehicle-flow

formulation of the problem. In these tables the legend is analogous to that used for the

previous set of tables. We also highlight in bold characters whenever a bound dominates

the other. As shown in these tables, our method is able to produce tighter bounds than

that of Baldacci et al. [16] for most instances and for every bounding procedure. Our

first bounding procedure is quite effective whenever branching decisions on the location

variables have a significant impact on either the bounds or the feasibility of the problem.

Indeed, this is the case for all sets of instances except for F5. Our first bounding proce-

dure obtains smaller gaps than that of Baldacci et al. [16] in 51 out of the 71 instances
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considered. For the second bounding procedure, our algorithm obtains smaller gaps in

43 out of the 71 instances. This shows the strength of the set-partitioning formulation

with the additional cuts. Our third bounding procedure, although it can be very time con-

suming, is shown to be effective for solving instances Chr-75x10ba and ppw-200x10-3a

in which the initial upper bounds are significantly improved during this procedure. In

general, our algorithm is able to solve four instances that are not solved by the method

of Baldacci et al. [16], and improves the best known feasible solution in three other in-

stances. However, for the instances in family F5 our method is outperformed by that of

Baldacci et al. [16]. The overall results suggest that our method is competitive against

the one of Baldacci et al. [16]. This is the result of several refinements with respect to

their method, namely the use of the new cuts, as well as the use of efficient pricing algo-

rithms that properly handle these new cuts. This includes the use of stronger fathoming

procedures based on the solution of a 2-cyc-SPPRC with resources.

4.6 Concluding remarks

In this paper, we have presented an exact method for solving the CLRP. The method-

ology consists in formulating the CLRP as a set-partitioning problem that is solved in

three stages: in a first stage we consider the two-index formulation and branch on the

location variables. This strategy works well for instances in which branching decisions

on the location variables have a significant impact on the feasibility or the bound at the

resulting nodes in the branching tree. The remaining gap is then closed by sequentially

applying two procedures, both based on the set-partitioning formulation and solved by

means of column-and-cut generation. The algorithm proposed in this paper is able to

produce the tightest gaps on a large number of instances. In addition, it has solved to

optimality four previously open instances and improved the best known feasible solution

for three additional ones. The methodology can be easily adapted to solve other routing

problems. For instance, it would be interesting to measure the impact of y-SCC and

SFrCI cuts on solving hard instances of the CVRP. With respect to the pricing algorithm

introduced in this paper, the consideration of SDEG cuts allows to get lower bounds
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that are comparable to those obtained when pricing on elementary routes in a fraction

of the computational effort. Indeed, in most cases only a fraction of SDEG cuts need to

be added to the master problem to obtain significant improvements in the lower bound.

Moreover, we show how to take advantage of this pricing problem in the computation of

tight fathoming rules that speed up the whole algorithm. Further research related to the

methodology introduced in this paper should address the development of new cutting

planes for the set-partitioning formulation and to adapt some of them to other routing

problems.
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CHAPTER 5

A GRASP + ILP-BASED METAHEURISTIC

Notes about the chapter

The contents of this chapter correspond to those of the article entitled A GRASP +

ILP-based Metaheuristic for the Capacitated Location-Routing Problem, co-authored

with Professors Jean-François Cordeau and Bernard Gendron, which is going to be

submitted for publication to Journal of Heuristics (ISSN: 1572-9397). Preliminary re-

sults have also been presented in the Optimization Days 2011 Conference, in Montréal,

Canada (2011) and in the CORS Annual Conference 2011, in St-Johns, Canada (2011).
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A GRASP + ILP-based Metaheuristic for the
Capacitated Location-Routing Problem

Claudio Contardo1,3, Jean-François Cordeau2,3, Bernard Gendron1,3

1Département d’informatique et de recherche opérationnelle, Université de Montréal

C.P. 6128, succ. Centre-ville, Montréal (PQ) Canada H3C 3J7
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3Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport (CIRRELT)

C.P. 6128, succ. Centre-ville, Montréal (PQ) Canada H3C 3J7

In this paper we present a three-phase heuristic method for the Capacitated Location-

Routing Problem. In the first stage, we apply a GRASP followed by local search proce-

dures to construct a bundle of solutions. In the second stage, an integer-linear program

(ILP) is solved taking as input the different routes belonging to the solutions of the bun-

dle, with the objective of constructing a new solution as a combination of these routes.

In the third and final stage, the same ILP is iteratively solved by column generation to

improve the solutions found during the first two stages. The last two stages are based on

a new model introduced in this paper, the location-reallocation model, which generalizes

the capacitated facility location problem and the reallocation model by simultaneously

locating facilities and reallocating customers to routes assigned to these facilities. Exten-

sive computational experience shows that our method is competitive with the methods

found in the literature, yielding the tightest average gaps on several sets of instances and

being able to improve the best known feasible solutions for some of them.

Key words: location-routing, column generation, metaheuristic.

5.1 Introduction

In the capacitated location-routing problem (CLRP) we are given a set of potential

facilities I and a set of customers J. To each facility i ∈ I we associate a fixed setup cost
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fi and a capacity bi. To each customer j ∈ J we associate a demand d j. An unlimited,

homogeneous fleet must be routed from the open facilities to serve the demand of the

customers in J. To each vehicle is associated a capacity Q, and to every two nodes i and

j is associated a traveling cost ci j. The goal is to select a subset of facilities and to design

vehicle routes around these facilities in order to 1) visit each customer once, 2) respect

both vehicle and facility capacities and 3) minimize the total cost.

The CLRP is an N P-hard combinatorial optimization problem since it generalizes

two well known N P-hard problems: the capacitated facility location problem (CFLP)

and the capacitated vehicle routing problem (CVRP). Exact methods for this problem in-

clude branch-and-cut methods [19, 36] and column generation methods [16, 37]. These

methods are able to solve instances with up to 200 customers. However, some instances

with 100 customers still remain unsolved. To handle large size instances, Prins et al.

[120, 122], Prodhon [124, 125] propose several metaheuristics. The method based on

Lagrangean relaxation with cooperative granular tabu-search seems to be the most effec-

tive for handling large instances of the CLRP. This method combines the solution of an

integer-linear program (ILP) (a CFLP) solved by Lagrangean relaxation (for location de-

cisions) followed by a granular tabu-search (for routing decisions). Pirkwieser and Raidl

[116] have introduced a variable neighborhood search (VNS) algorithm for the periodic

CLRP (PLRP) and the CLRP based on the combination of a pure VNS along with the

solution of several ILPs. The ILPs they consider include a location model (a two-index

CFLP) and a reallocation model (a set partitioning model). Hemmelmayr et al. [78]

have developed an adaptive large neighborhood search (ALNS) heuristic for the CLRP.

In an ALNS method, several different neighborhoods are applied and ranked on-the-run

according to their success to improve solutions. In the subsequent iterations the high-

est ranked neighborhoods have a larger probability of being chosen. Their algorithm is

capable of improving the best known solutions on several instances. Finally, Yu et al.

[147] propose a simulated annealing heuristic for the problem, in which CLRP solutions

are coded as genes and then modified using mutation and crossover operators.

The main contributions of this paper are:

i. to introduce a new greedy randomized adaptive search procedure (GRASP) for the
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CLRP that is competitive with the previous GRASP proposed by Prins et al. [121]

and which provides better average gaps on several sets of instances.

ii. to introduce a novel location-reallocation model that takes into account the loca-

tion and the routing decisions simultaneously. The proposed model is based on

a set-partitioning formulation that generalizes both the CFLP and the reallocation

model of de Franceschi et al. [48], the first by adding the possibility of inserting

customers in the middle of the routes, and the second by adding the possibility of

reallocating whole routes to different facilities.

iii. to introduce a new technique based on the solution of an ILP, for combining a

bundle of reasonably good solutions with the objective of eventually producing

another solution of better quality.

The location-reallocation model introduced here can also be seen as a restricted

CLRP in which some routing decisions are fixed, and thus also inherits all of the cuts

valid for the CLRP [19, 36]. The addition of these extra cuts plays an important role in

the proposed heuristic. Indeed, the strength of the model relies on the quality of the root

relaxation lower bound. As a pure branch-and-cut-and-price algorithm is computation-

ally too demanding, column generation is applied only at the root node, and even there

by only applying some simple pricing heuristics. The resulting ILP is then solved by

means of a general-purpose solver. Therefore, the strength of the linear relaxation lower

bound is crucial for the performance of the algorithm.

The rest of the paper is organized as follows: In Section 5.2 we give a general de-

scription of our solution approach. In Section 5.3 we present two of the metaheuristics

that are used in our algorithm, namely a GRASP and a local search procedure used to

improve solutions. In Section 5.4 we introduce the location-reallocation model (LRM).

We strengthen it with valid inequalities and describe the pricing algorithm used to derive

columns of negative reduced cost. In Section 5.5 we introduce the two hybrid meta-

heuristics, namely a solution blender heuristic and a local improvement heuristic, both

of which are based on the solution of the LRM. This is followed by computational results

in Section 5.6 and by conclusions in Section 5.7.
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5.2 An overview of the complete algorithm

In this section we give a general description of the different parts of our algorithm,

and describe it by means of a pseudo-code. Our algorithm consists of four main proce-

dures, namely a GRASP metaheuristic, local search (LS), a solution blender (SB) and a

local improvement heuristic (LIH).

5.2.1 GRASP

A GRASP is a simple metaheuristic based on the randomization of a greedy criterion.

In this paper, we propose a GRASP based on a variation of the extended Clarke and

Wright savings algorithm (ECWSA) introduced by Prins et al. [121].

5.2.2 Local search

Local search procedures are greedy algorithms applied to a feasible solution to fur-

ther improve its quality. Here, we use seven different methods that are applied iteratively

until no further improvements are found.

5.2.3 Solution blender

The solution blender (SB) is a method based on the solution of an integer-linear

program, called the location-reallocation model (LRM). The LRM is a set-partitioning

model in which three types of variables are considered: location variables, assignment

variables and routing variables. The first two are polynomial in number while there

are an exponential number of the latter. Normally, such models are solved by column

generation. However, in the SB the set of routing variables is restricted to contain a

fixed number of columns defined in advance, and therefore no column generation is

applied. We complement this with the use of local branching constraints used to fix a

large number of variables.
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5.2.4 Local improvement heuristic

The local improvement heuristic (LIH) is a destroy-and-repair method inspired from

the ALNS metaheuristic. In this method, a destroy operator is applied to remove cus-

tomers from the current solution. The LRM is then solved by column generation, with

the aim of constructing a new feasible solution of better quality. The LIH uses a param-

eter Γ≤ |J| in the destroy operators to remove a target number Γ of customers from the

solution which we denote it by LIH(Γ).

5.2.5 The complete algorithm

We now describe by means of a pseudo-code the complete algorithm. For a given

solution T of the CLRP, let v(T ) denote the cost of T . Also, let Γ0 be a parameter

representing a certain number of customers, normally a small proportion of them.
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Algorithm 5.1 GRASP + ILP
1: Use GRASP + LS and build solution pool P .

2: Use SB and add the new solutions found to P .

3: T ← argmin{v(S ) : S ∈P}.
4: Γ← Γ0.

5: repeat

6: Apply LIH(Γ) to T .

7: if it found a solution T ′ /∈P then

8: P ←P ∪T ′.

9: if v(T ′)< v(T ) then

10: T ←T ′ and go to 6.

11: end if

12: end if

13: Use SB and add the new found solutions to P .

14: if a new solution T ′ was found with v(T ′)< v(T ) then

15: T ←T ′ and go to 6.

16: end if

17: Increase Γ by some positive value.

18: until some stopping criterion is met

5.3 Pure metaheuristics

In this section we describe two metaheuristic procedures used in our algorithm,

namely a GRASP and a local search (LS) method. We refer to these as pure meta-

heuristics to distinguish them from the ILP-based metaheuristics that will be introduced

later.

5.3.1 GRASP

GRASP is a popular metaheuristic which, based on some simple greedy deterministic

criterion, includes some randomization in order to diversify the search of the solution
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space. This randomized greedy algorithm is applied many times, thus increasing the

likelihood of identifying a good quality solution. The randomization is usually subject to

what is called a restricted candidate list (RCL), for which a given greedy criterion of the

form “pick x′ = argminx{ f (x) : x ∈ X}" is replaced with “Let L contain the κ elements

x ∈ X with smallest value of f (x). Pick x′ randomly in L ". For the CLRP, Prins

et al. [121] proposed a GRASP method that they complemented with path relinking.

Their method is based on the so-called extended Clarke and Wright savings algorithm

(ECWSA). In this paper we propose a variant to that method, and explain how we apply

randomization at three different levels of the algorithm. We now describe, by means

of a pseudo-code (Algorithm 5.2), the deterministic algorithm on which we base the

proposed GRASP algorithm.

First, let us introduce some notation. For any two routes R,S and for any facility

i ∈ I, s(R,S, i) represents the saving produced when merging routes R and S for creating

a new route T which is assigned to facility i, and such that capacities are respected. Note

that if R and S contain two or more customers, four different merges are possible, and so

the definition of s implicitly assumes that the resulting route T is the one with the lowest

cost. For details on the merging procedure, the reader is referred to Clarke and Wright

[35] and to Prins et al. [121]. Also, for a boolean statement p, we define δp to be equal

to 1 if p = true, and 0 otherwise. Finally, F denotes the set of currently open facilities,

A denotes the set of already assigned customers, γ(·) represent the facilities to which

customers are assigned (a customer j /∈ A is such that γ( j) =−1), and l(·) represents the

current loads of facilities.
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Algorithm 5.2 ECWSA
1: F ← /0,A← /0,γ( j)←−1 for all j ∈ J, l(i)← 0 for all i ∈ I.

2: while ∃ j ∈ J,γ( j) =−1 do

3: j′← argmin{∑i∈F ci j : j /∈ A}.
4: i′← argmin{2ci j′+ fiδi/∈F : i ∈ I, l(i)+d j′ ≤ bi}.
5: F ← F ∪{i′},A← A∪{ j′},γ( j′)← i′, l(i′)← l(i′)+d j′ .

6: end while

7: R←{{γ( j), j} : j ∈ J}.
8: repeat

9: (R′,S′, i′)← argmax{s(R,S, i) : R,S ∈R, i ∈ I,and merge respects capacities}.
10: s← s(R′,S′, i′).

11: if s > 0 then

12: Merge R′,S′ into a new route T ′ and assign ir to facility i′.

13: Update R by replacing R′ and S′ by the merged route T ′.

14: Update F , A, γ and l accordingly.

15: end if

16: until s≤ 0

In our GRASP, we replace the three optimization problems appearing in the pseudo-

code with some randomized versions. The deterministic statement j′← argmin{∑i∈F ci j :

j /∈ A} is changed to randomly picking a customer j′ among the five customers not

in A with minimum value of ∑i∈F ci j. The statement i′ ← argmin{2ci j′ + fiδi/∈F : i ∈
I, l(i)+ d j′ ≤ bi} is decomposed into two random stages. For the set of closed facili-

ties (if any), we compute the quantity v(Fc) = (∑i/∈F 2ci j′ + fi)/|Fc| and assign to this

quantity a dummy node iFc , and for each facility i ∈ F we compute separately the quan-

tity v(i) = 2ci j′ and assign to it the node i. Now, we put in a list the |F |+ 1 quanti-

ties defined before (only |F | in case |Fc| = 0) and randomly pick a node i′ among the

three which minimize it. If i′ ∈ I, then we assign customer j′ to this facility. Other-

wise, if i′ = iFc we randomly pick a facility i′′ /∈ F among the k = d|I|/3e that minimize

2ci′′ j′ + fi′′ . Facility i′′ is then opened and customer j′ assigned to it. Finally, the state-
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ment (R′,S′, i′)← argmax{s(R,S, i) : R,S ∈ R, i ∈ I,and merge respects capacities} is

modified to randomly pick a merge among the five possibe merges with maximum sav-

ing. We call this algorithm the randomized ECWSA (RECWSA). The RECWSA is

repeated for 300 times, and the solutions are stored in a solution pool P . For each of the

solutions in the pool, we apply local search (detailed in the next section) to improve their

quality. After that, we clean the pool by keeping the 100 best solutions. These solutions

will be the input of the solution blender heuristic that will be described in Section 5.5.1.

5.3.2 Local Search

Local search procedures are simple greedy algorithms applied to a feasible solution

to further improve its quality. They are usually based on simple greedy criteria, which

are fast to compute. In our case, we have implemented seven different local search

procedures:

FACILITY OPEN Compute the cost of opening a previously closed facility i and of

re-assigning routes to this newly open facility. We potentially close a facility if

it is cheaper to move all of its routes to the newly open one. This procedure is

performed using a first-improvement criterion (a move is accepted as soon as it

produces another solution of lower cost).

FACILITY SWAP Swap an open facility with a closed one, and reassign routes from

one facility to the other. This procedure is performed using a first improvement

criterion.

GIANT TOUR SPLIT Merge all the routes linked to the same facility into one giant

TSP tour [132]. Split the tour using a shortest path algorithm so as to minimize the

total routing cost. This procedure is performed using a first-improvement criterion.

ROUTE SWAP Swap two routes linked to different facilities. This procedure is per-

formed using a first-improvement criterion.

2-OPT Swap two customers from different routes [44]. This procedure is performed

using a best-improvement criterion (among the moves producing solutions with

lower objective values, the one that produces the lowest cost solution is accepted).
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2-OPT* Two routes are split and re-merged [119]. This procedure is performed using a

best-improvement criterion.

3-OPT Pick three customers in different routes and evaluate all possible swaps between

them [98]. This procedure is performed using a first-improvement criterion.

Each of these procedures is performed repeatedly until no further improvements are

detected. Also, the order in which each of the procedures is performed is as described

above, and they are cyclically performed until no further improvements are found.

5.4 A location-reallocation model

In this section we introduce the Location-Reallocation Model (LRM), a new ILP

model that generalizes the CFLP and the reallocation model of de Franceschi et al. [48],

the first by adding the routing decisions into the problem, and the second the location

decisions. This model is the core of the ILP-based heuristics introduced in this paper,

namely the solution blender and the local improvement heuristics. We present a mathe-

matical formulation of the model, some valid inequalities and the pricing algorithm used

in the column generation.

5.4.1 Mathematical formulation

Let us consider a feasible solution T of the CLRP. For a given customer subset T ⊆ J

let T (T ) be the truncated solution of the CLRP obtained from T after

i. removing the customers of set T ,

ii. short-cutting the remaining consecutive nodes in the routes,

iii. deleting the edges linking facilities to customers,

iv. and relinking the two remaining endpoints of every route.

As a result, what we obtain is a set of closed subtours, each of which consisting of

at least two customers. Figure 5.1 illustrates this procedure. On the left side, circu-

lar dots represent customer locations, whereas square nodes represent facility locations.

The nodes surrounded by dotted circles are the nodes in set T . The right side represents
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the subtours resulting from the removal of the customers in set T . Let us denote by R

the set of these subtours and for each r ∈ R and i ∈ I let h(i,r) and t(i,r) be the two

consecutive nodes in r which, after linking r to i using these two nodes as endpoints,

produce the route with the least possible cost. To avoid symmetries, we arbitrarily take

h(i,r), t(i,r) satisfying h(i,r) < t(i,r). Customers in T must be reinserted back into

T (T ) and subtours R ∈R must be assigned to facilities to construct a (eventually new)

feasible solution of the CLRP. For every subtour r we let E(r),V (r) be the sets of edges

and customers in that subtour. We also let c(r) be the routing cost of such subtour,

and q(r) be its load. For every i ∈ I and e ∈ ∪r∈RE(r) we associate an insertion point

p = (i,e), at which customers in T can be reinserted. Let us denote, for a given facility i,

Ii(R) = {p = (i,e) : e∈ E(r) for some r ∈R}. Also, for each r ∈R and for each i∈ I,

p=(i,{i,h(i,r)}) represents an insertion point from which a subtour can be connected to

facility i. For a given i ∈ I, we denote I (h(i,R)) = {p = (i,e) : r ∈R,e = {i,h(i,r)}}.
Analogously, p = (i,{i, t(i,r)}) represents the other insertion point from which the sub-

tour is linked to facility i and we denote the set of insertion points as I (t(i,R)). Finally,

the insertion point p = (i,{i, i}) is used for routes starting and ending at facility i and

serving only customers in T . For every facility i ∈ I the set of insertion points associated

with i is defined as

Ii = Ii(R)∪I (h(i,R))∪I (t(i,R))∪{(i,{i, i})}. (5.1)

For every insertion point p = (i,e) ∈Ii we define i(p) = i, e(p) = e. Also, note that

unless p = (i,{i, i}), e(p) must contain at least one node in a subtour r, and if both nodes

belong to a subtour then it must be the same. Therefore, one can define r(p) equal to r

in that case, and equal to −1 in the case p = (i,{i, i}). For every insertion point p, we

denote by Sp the set of sequences or partial paths that can be inserted in p. Note that

all the sequences that result in a violation of the capacities can be safely removed from

Sp. For every s ∈Sp we let E(s) be the set of edges defining s, q(s) be the load of s

(without considering the two endpoints) and c(s) be the cost associated to that partial
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route, computed as follows:

c(s) =

∑e∈E(s) ce− ce(p) if p ∈Ii(R),s ∈Sp

∑e∈E(s) ce otherwise.
(5.2)

(a) Complete solution. Set T surrounded by
dotted circles

(b) Incomplete solution after the removal of
nodes in T

Figure 5.1: Example of node removal from a CLRP solution

Let us define the following notation. Let zi be a binary variable equal to 1 iff facility

i is selected for opening. For every pair {i, j}, i ∈ I, j ∈ T let yi j be a binary variable

equal to 1 iff customer j is served by a single-customer route from facility i. For every

subtour r ∈R and for every facility i∈ I let uR
ir be a binary variable equal to 1 iff subtour

r is assigned to facility i. For every facility i ∈ I and customer j ∈ T let uT
i j be a binary

variable equal to 1 iff customer j is served from facility i ∈ I. For every s ∈S we let ws

be a binary variable equal to 1 iff sequence s (associated to a certain insertion point) is

selected. The location-reallocation model is as follows:
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∑
r∈R

c(r) + min ∑
i∈I

fizi− ∑
i∈I,r∈R

ch(i,r)t(i,r)u
R
ir +2 ∑

e∈δ (I)
ceye + ∑

s∈S
c(s)ws (5.3)

subject to

∑
i∈I

uT
i j = 1 j ∈ T (5.4)

∑
i∈I

uR
ir = 1 r ∈R (5.5)

yi j + ∑
p∈Ii

∑
s∈Sp, j∈V (s)

ws = uT
i j i ∈ I, j ∈ T (5.6)

∑
s∈S(i,{i,h(i,r)})

ws = uR
ir i ∈ I,r ∈R (5.7)

∑
s∈S(i,{i,h(i,r)})

ws− ∑
s∈S(i,{i,t(i,r)})

ws = 0 i ∈ I,r ∈R (5.8)

∑
s∈Sp

ws ≤ uR
ir i ∈ I, p ∈Ii(R) (5.9)

∑
i∈I

∑
p∈Ii,r(p)=r

∑
s∈Sp

q(s)ws ≤ Q−q(r) r ∈R (5.10)

∑
j∈T

d juT
i j + ∑

r∈R
q(r)uR

ir ≤ bizi i ∈ I (5.11)

z,y,u,w binary (5.12)

The objective function contains two parts: a constant term given by the first expres-

sion, which takes into account the cost of the remaining part of the solution after the

removal of the nodes in set T ; and a linear term, combining setup costs with routing

costs. Constraints (5.4)-(5.5) are the assignment constraints of customers to facilities.

Constraints (5.6) are the degree constraints which ensure that customers in T will be

reinserted. Constraints (5.7)-(5.8) ensure that partial routes r ∈ R will be linked to a

facility. Constraints (5.9) ensure that for every insertion point p ∈ Ii(R) at most one

column will be assigned. Moreover, if a route r is not assigned to a certain facility i, then

all of the sequences s ∈Sp with i(p) = i and r(p) = r are automatically set to 0. Con-
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straints (5.10) are the vehicle capacity inequalities. They make sure that the final routes

will not exceed vehicle capacities. Constraints (5.11) are the facility capacity inequali-

ties. They make sure that the total demand assigned to every facility will not exceed its

capacity, while at the same time that no load will be assigned to closed facilities.

Note that the minimum sizes of the sequences s may vary. Indeed, a sequence s

participates in the construction of multiple-customer routes, so every time we have to

make sure that only routes containing two or more customers are generated. Thus, for

p ∈Ii(R), the minimum size of s ∈Sp (defined as the number of nodes visited other

than those of e(p)) is 1. If p = (i,{i, i}) then the minimum size is 2. Finally, if p ∈
I (h(i,R))∪I (t(i,R)) for some i, then the minimum size is 0.

5.4.2 Valid inequalities

The location-reallocation problem described above includes a polynomial number of

constraints and can be solved by means of branch-and-price. However, it is possible to

include all the valid inequalities from the three-index formulation [37] after the inclusion

of the following flow and assignment variables. For every facility i ∈ I and edge e ∈ E,

let us define a flow variable xi
e as follows:

xi
e =


uR

ir −∑s∈S(i,e)
ws if e ∈ E(r)\{{h(i,r), t(i,r)}} for some r ∈R

1−uR
ir if e = {h(i,r), t(i,r)} for some i ∈ I,r ∈R

∑p∈Ii ∑s∈Sp,e∈E(s)ws otherwise.

(5.13)

Also, for every facility i∈ I and customer j ∈ J let us define the following assignment

variables:

ui j =

uR
ir if j ∈V (r),r ∈R

uT
i j if j ∈ T .

(5.14)

Finally, for every facility i ∈ I and j ∈ J \T we set yi j = 0.

It suffices to use identities (5.13)-(5.14) to include the valid inequalities from the

three-index vehicle-flow formulation. In particular, it is useful to include the following
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four families of inequalities: y-capacity cuts (y-CC), y-strengthened effective facility ca-

pacity inequalities (y-SEFCI), y-location-routing generalized large multistar inequalities

(y-LRGLM), and disaggregated co-circuit constraints (DCoCC). For details on the in-

equalities, we refer to Belenguer et al. [19] and Contardo et al. [36]. Moreover, it is

possible to strengthen the y-CC and the y-ESFCI to hybrid forms of the y-strengthened

capacity cuts (y-SCC) and set-partitioning strengthened effective facility capacity in-

equalities (SP-SEFCI), which have been developed by Contardo et al. [36] for solving

the CLRP by branch-and-cut-and-price.

5.4.3 Column Generation

The reduced cost of a column ws will be computed differently depending on the

position of its insertion point p. Let T (s)⊆ T be the set of customers in T that are served

by column s. Suppose that no additional inequalities have been added to the problem,

and let α,β ,σ ,γ,θ be the dual variables associated with constraints (5.6)-(5.10). The

reduced cost associated to a column s with an insertion point p ∈Ii will be given by

c(s) =



c(s)−∑ j∈T (s)α j−∑ j∈T (s) d jθr(p)− γp if p ∈Ii(R)

c(s)−∑ j∈T (s)α j−βir(p)−σir(p) if p ∈I (h(i,R))

c(s)−∑ j∈T (s)α j +σir(p) if p ∈I (t(i,R))

c(s)−∑ j∈T (s)α j if p = (i,{i, i}).

(5.15)

If valid inequalities have been added during the solution of the problem, the reduced

costs are modified accordingly using the dual variables associated to these inequalities.

Our pricing algorithms take into account the different expressions in (5.15) (modified by

the dual information associated to valid inequalities) but they work along the exact same

principle. The complete pricing is performed in two stages.

First, we use a simple tabu search heuristic starting from a column containing a single

customer. That customer is chosen in such a way that the reduced cost of the resulting

column is as small as possible. We use four neigborhoods to inspect the space close to a
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given sequence. An ADD neighborhood picks a customer not in the sequence and inserts

it into the sequence. A DROP neighborhood is used to perform the opposite move. A

SWAP neighborhood picks a customer inside the current sequence and one outside, and

swaps them. Finally, a SWITCH neighborhood takes two customers inside the sequence

and swaps them. We combine neighborhoods ADD, DROP, SWAP and SWITCH using

the customers in set T . The neighborhoods are sorted and applied in the following order:

ADD - DROP - ADD - SWAP - ADD - SWITCH. Indeed, preliminary experiments

showed that the ADD neighborhhod is often the most useful, and thus it is the one that

is performed the most. The movements are using a best-improvement criterion, and we

use a tabu list to forbid movements to positions previously visited during the last three

iterations. The algorithm stops whenever a column of negative reduced cost has been

detected or when a maximum number of iterations has been reached. The maximum

number of iterations at the beginning is set to 100. In order to accelerate the pricing

algorithms, after seven rounds of adding cuts, we lower this threshold to 20.

When the tabu search procedure finishes with success (i.e., after having identified a

column with negative reduced cost), starting from that column we apply a greedy inser-

tion algorithm, very similar to the one presented by de Franceschi et al. [48]. We evaluate

the insertion of every single customer in a list L initially containing the customers in T

not yet inserted into the column at every possible position. If the resulting column has

negative reduced cost, then it is added to a pool and the same algorithm is recursively

applied to it. This dynamic programming algorithm is applied until it reaches a depth of

5 from the starting column (the one obtained by the tabu search procedure).

5.5 ILP-based metaheuristics

In this section we describe two hybrid metaheuristics based on the solution of the

LRM described earlier. We first describe a solution blender heuristic (SB), a method

based on the existence of a pool of reasonably good solutions. We then describe a local

improvement heuristic (LIH) based on the iterative solution of the LRM and solved by

column and cut generation.
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5.5.1 Solution blender

We present a heuristic procedure based on the solution of a particular case of the

LRM. We refer to this method as the solution blender (SB). Given a pool of solutions

P , we apply the following procedure to every solution S ∈P . Let R(S ) be the set of

routes describing solution S . For every route R ∈R(S ) we first consider the subtour

produced by disconnecting R from its facility and then reconnecting its two endpoints.

This tour is then reconnected to every facility i using as endpoints the pair of consecutive

nodes in the subtour that produce the route with minimum cost. This procedure creates,

for every route R ∈R(S ), |I| routes, each connected to a different facility. We refer to

this procedure as the replication step.

At the end of the replication step, we will potentially have ∑S∈P |R(S )|×|I| routes

(some repeated routes might be discarded). The LRM is then solved using T = J and

by restricting the set of columns to contain those constructed during the replication step,

without applying any column generation. The optimal solution of this restricted problem

is then likely to combine routes from different solutions. Indeed, in many cases in which

the GRASP procedure was not able to find a near optimal solution, the blending phase

performed substantially better. In our case, the input for the solution blender is the solu-

tion pool P containing the 100 best solutions found by the GRASP method combined

with local search. Every new found solution is also subject to local search. Note also

that the blending procedure is a generalization of the procedure introduced by Prins et al.

[122] in which the size of the pool is fixed to one. Moreover, in that case this method

also coincides with the solution of the CFLP.

5.5.1.1 Local branching

At the end of the root node relaxation, we perform a local branching heuristic to guide

the search towards promising directions during the branch-and-bound search. We fix to

1 the location variables whose values are greater than or equal to 0.9. For the location

variables that are smaller than or equal to 0.1, we pick at most two variables zi1,zi2 with
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the smallest reduced costs. For these vriables we impose the following constraint:

zi1 + zi2 ≤ 1.

The remaining location variables satisfying zi≤ 0.1 are all fixed to zero. In particular,

note that this method gives preference to the variables taking strictly positive values at the

root relaxation, over the variables that are at their lower bound 0. In the case where three

or more location variables take positive values (all of which having the same reduced

cost equal to zero), we give preference to the ones taking the largest values.

5.5.2 Local improvement heuristic

Let T be the solution with minimum cost resulting from the previous heuristic pro-

cedures. Let ρ = d0.1|J|e be a parameter. For different values of k > 0, we let Γ = kρ

be the target size of customer set T to be removed from and reinserted back in T (T ).

The local improvement phase starts with T and k = 1, and successively solves the LRM

using sets T of target size kρ . Each time a better solution is found, the algorithm is

restarted with the same value of k. When no more improvement can be detected, k is

increased by one unit and the algorithm is restarted. The value of k is increased at most

twice, and each time we update this value, we refer to it as a major iteration of the local

improvement heuristic. Note that every new found solution is subject to local search.

In what follows we describe the different parts of this procedure, namely the choice of

the customer set T , the inclusion of an initial pool of columns as well as some local

branching rules.

5.5.2.1 Choice of set T

The set T of customers to be erased from T is selected by following similar rules

to those explained in de Franceschi et al. [48] and Pirkwieser and Raidl [116]. We first

define the following notion of relatedness between two customers: Let u,v ∈ J be two

customer nodes. Let cmax = max{ch j : h, j ∈ J} be the maximum distance between any

two customers. We define the relatedness between u and v as r(u,v) = 1− cuv/cmax. If
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u,v belong to the same route then r(u,v) is multiplied by 0.75, and if u,v belong to the

same facility then r(u,v) is multiplied by 0.85. The idea is to penalize the choice of

customers belonging to the same route or being served by the same facility, as the local

search makes it unlikely that these customers will switch places. The two rules that we

have implemented can be summarized as follows:

NEIGHBORHOOD rule Given a pivot customer u, we make T = {u} and iteratively

insert into T the customer u /∈ T such that ∑v∈T r(u,v) is maximal.

RANDOM rule We randomly pick a subset of customers and insert it into T .

We first apply the NEIGHBORHOOD rule five times. Each time, we save into a

list NT the customers that have participated in T in the previous iterations. For the

next iteration, we use as pivot node the customer u /∈ NT such that ∑v6=u,v/∈NT r(u,v) is

maximal. When the NEIGHBORHOOD rule has been used 5 times without success, we

use the RANDOM rule five more times.

5.5.2.2 Initial set of columns

We have found it is beneficial to start the column generation algorithm with a small,

but likely useful set of initial columns. For every insertion point p, we let V (p) ⊆ T be

the subset of customers of size at most five containing the closest nodes to e(p), in terms

of the sum of the distances to the two endpoints of e(p). Then, we add to the master

problem all the sequences obtained as combinations of the nodes in V (p).

5.5.2.3 Local Branching

Let Io, Ic the subsets of facilities that are open or closed in solution T . From the

beginning of the optimization we let

∑
i∈Io

zi−∑
i∈Ic

zi ≥ |Io|−η .

Depending on the value of Γ, the parameter η is set either to 2 (if Γ = ρ) or 0 (if

Γ≥ 2ρ). In the first case, we let at most two location variables change their values, while
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in the second case the location variables are actually fixed to their current values in T .

When the root node relaxation has been solved with success and no more columns with

negative reduced cost or violated inequalities are detected, we also consider the same

local branching constraint as for the solution blender.

5.6 Computational experience

We have run our method on an Intel Xeon E5462, 3.0 Ghz processor with 16GB of

memory. The code was compiled with the Intel C++ compiler v11.0 and executed on

Linux, kernel 2.6. Linear and integer programs were solved with CPLEX 12.2. The al-

gorithm has been tested over four sets of instances from the literature, containing a total

of 89 instances. The first set of instances (F1) has been developed by Belenguer et al.

[19] and contains 30 instances with capacitated vehicles and facilities. The second set of

instances (F2) has been introduced by Tuzun and Burke [142] and contains 36 instances

with capacitated vehicles and uncapacitated facilities. The third set of instances (F3)

has been adapted from other vehicle routing problems by Barreto [18] and contains 19

instances with capacitated vehicles, mixing some instances with capacitated and unca-

pacitated facilities. The fourth and last set of instances (F4) has been introduced by

Baldacci et al. [16] and contains four instances with limited vehicle capacities and un-

capacitated facilities. The dimensions of the instances vary from very small instances

with 12 customers and two facilities up to very large instances with 200 customers and

20 facilities.

For the parameter setting, several runs have been performed on the four sets of in-

stances. At the end, however, we use the same parameters for all instances and the

average values reported correspond to those obtained on a total of 10 runs for each in-

stance. In Tables 5.I-5.IV we report the results obtained by our algorithm on all sets

of instances. In these tables, z∗BKS corresponds to the best known solution as reported

by previous authors, z∗avg is the average cost obtained by our solution method, stdev is

the standard deviation (in %) of the cost over the 10 runs, gapavg is the average relative

gap (in %), computed as 100× (z∗avg− z∗BKS)/z∗BKS, Tavg is the average CPU time, in sec-
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onds, over the 10 runs, z∗best is the best solution found in these 10 runs. This value does

not necessarily correspond to the best known solution found by our method during the

parameter setting phase, which are described later in Table 5.X. Finally, gapbest is the

relative gap (in %) of the best solution found, computed as 100×(z∗best−z∗BKS)/z∗BKS. As

the results show, our solutions are 0.22% above the best known solution on average for

the instances of set F1, 0.59% for the instances of set F2, 0.61% for the instances of

set F3 and 0.34% for the instances of set F4. Moreover, we are able to improve these

values in 11 out of the 89 instances considered in our study. Regarding the CPU times,

they lie around 45 minutes on average, and usually stay below 3 hours.

In Tables 5.V-5.VIII we report the evolution of our algorithm during the different

stages. In these tables, instances are grouped according to their size. The headers

GRASP, SB, LIH 1, 2, 3 stand for the different parts of our algorithm, including the

three major iterations of the local improvement heuristic. The sub-headers gapavg and

Tavg stand for the average relative gap (in percentage, computed as before) and the av-

erage CPU time spent in seconds. In general, the SB is a very effective method for

reducing the gap with respect to the solutions found during the GRASP. However, the

GRASP should not be underestimated, since the behaviour of the SB depends on the

good quality of the routes found by the GRASP. For the LIH, it is worth observing that

for instances of set F1 just the first improvement is able to reduce the gap by one half.

Subsequent iterations of the improvement stage are able to reduce the gap by smaller

margins. Depending on the needs of the decision maker, the improvement phase can be

extended to more iterations or reduced to fewer, compensating the time saved or added

with the quality of the solutions obtained.

In Table 5.IX we compare our algorithm against several of the most recent heuristics

developed for the CLRP. The algorithms considered are: GRASP [121], MA|PM [120],

LRGTS [122], VNS+ILP [116], SALRP [147] and ALNS [78]. The set of instances

F4 has not been considered by any of these heuristics and is therefore not included in

this table. As shown in the table, our algorithm is able to obtain the tightest average

gaps for sets F1 and F2, and competitive average gaps on instances of set F3, getting

better average results than GRASP, MA|PM and LRGTS but outperformed by SALRP



150

and ALNS. On the other hand, algorithms LRGTS and VNS+ILP take much less CPU

time, but they seem to be less robust than our method in terms of solution quality. Ad-

ditionally, our GRASP is able to obtain better solutions than that developed by Prins

et al. [121] for instances of families F1 and F2. Finally, note that by only applying our

GRASP algorithm and the SB, we already obtain very competitive gaps, usually better

than the previous approaches except for SALRP on instances of set F1 and for SALRP

and ALNS on instances of set F3.

Finally, in Table 5.X we report the new best known feasible solutions found by our

algorithm. Note that these solutions were not necessarily found during the 10 runs of our

method, but rather during the calibration of several parameters. In total, our algorithm

was able to improve the solutions on 17 out of the 89 instances considered in this sutdy.

5.7 Concluding Remarks

In this paper we have introduced a new heuristic method for the CLRP based on a

GRASP followed by the iterative solution of a new ILP model, the location-reallocation

model (LRM). The GRASP introduced in this paper provides better solutions than the

previous approach of Prins et al. [121] for most of the instances considered in this study.

We have introduced the location-reallocation model that generalizes the CFLP and the

RM of de Franceschi et al. [48] by simultaneously determining the locations of facilities

as well as the reallocation of customers and routes to those facilities. We have introduced

a new heuristic method, the solution blender (SB), that takes as input a set of solutions for

the CLRP and solves the LRM to find near optimal solutions. Indeed, by only applying

our GRASP followed by the SB we obtain gaps that are competitive with the methods

found in the literature. We complement this by applying a local improvement heuristic

based on the iterative solution of the LRM solved by column and cut generation. This

local improvement heuristic was found to be very effective in tightening the optimality

gap. Finally, we were able to improve the best known feasible solutions on 17 out of the

89 instances considered in this study.
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Instance z∗BKS z∗avg stdev gapavg Tavg z∗best gapbest

ppw-20x5-1a 54793 54793 0.00 0.00 1.28 54793 0.00
ppw-20x5-1b 39104 39104 0.00 0.00 2.25 39104 0.00
ppw-20x5-2a 48908 48908 0.00 0.00 1.21 48908 0.00
ppw-20x5-2b 37542 37542 0.00 0.00 2.28 37542 0.00
ppw-50x5-1a 90111 90111 0.00 0.00 12.18 90111 0.00
ppw-50x5-1b 63242 63248 0.03 0.01 17.40 63242 0.00
ppw-50x5-2a 88298 88332 0.12 0.04 14.77 88298 0.00
ppw-50x5-2b 67308 67554 0.34 0.37 18.53 67373 0.10
ppw-50x5-2bis 84055 84055 0.00 0.00 17.72 84055 0.00
ppw-50x5-2bbis 51822 51898 0.02 0.15 24.06 51883 0.12
ppw-50x5-3a 86203 86203 0.00 0.00 14.76 86203 0.00
ppw-50x5-3b 61830 61836 0.03 0.01 20.16 61830 0.00
ppw-100x5-1a 274814 275626 0.06 0.30 188.51 275406 0.22
ppw-100x5-1b 213615 214699 0.12 0.51 178.81 214308 0.32
ppw-100x5-2a 193671 194118 0.17 0.23 106.96 193769 0.05
ppw-100x5-2b 157095 157238 0.05 0.09 94.29 157157 0.04
ppw-100x5-3a 200079 200341 0.02 0.13 86.76 200277 0.10
ppw-100x5-3b 152441 152737 0.26 0.19 95.87 152441 0.00
ppw-100x10-1a 287983 293117 2.79 1.78 1840.90 288415 0.15
ppw-100x10-1b 231763 233416 0.79 0.71 2329.90 230989 -0.33
ppw-100x10-2a 243590 244022 0.11 0.18 211.45 243695 0.04
ppw-100x10-2b 203988 204200 0.17 0.10 242.75 203988 0.00
ppw-100x10-3a 250882 252371 0.36 0.59 2576.34 250882 0.00
ppw-100x10-3b 204317 204996 0.14 0.33 1005.74 204602 0.14
ppw-200x10-1a 477248 476674 0.12 -0.12 3785.47 475344 -0.40
ppw-200x10-1b 378065 378781 0.27 0.19 3646.74 377043 -0.27
ppw-200x10-2a 449571 449469 0.05 -0.02 5215.70 449152 -0.09
ppw-200x10-2b 374330 375053 0.13 0.19 2831.53 374469 0.04
ppw-200x10-3a 469433 471218 0.13 0.38 4356.16 469706 0.06
ppw-200x10-3b 362817 363755 0.18 0.26 4936.13 362743 -0.02
Average 0.22 0.22 1129.22 0.01

Table 5.I: Results on instances of set F1



152

Instance z∗BKS z∗avg stdev gapavg Tavg z∗best gapbest

P111112 1467.7 1475.4 0.24 0.52 171.94 1468.2 0.03
P111122 1449.2 1454.2 0.35 0.35 474.10 1449.2 0.00
P111212 1394.8 1405.0 0.36 0.73 161.80 1396.6 0.13
P111222 1432.3 1445.4 0.45 0.92 505.91 1432.9 0.04
P112112 1167.2 1178.3 0.15 0.95 225.19 1176.3 0.78
P112122 1102.2 1106.0 0.25 0.34 415.47 1102.8 0.05
P112212 791.7 796.9 0.50 0.67 196.60 791.9 0.03
P112222 728.3 728.4 0.03 0.02 370.49 728.3 0.00
P113112 1238.5 1241.9 0.21 0.28 224.21 1239.4 0.08
P113122 1245.3 1246.4 0.07 0.09 471.62 1245.5 0.02
P113212 902.3 902.5 0.06 0.02 177.30 902.3 0.00
P113222 1018.3 1019.6 0.11 0.13 496.25 1018.3 0.00
P131112 1866.8 1934.7 0.24 3.64 1073.37 1928.0 3.28
P131122 1823.5 1834.2 0.32 0.58 2020.47 1823.2 -0.02
P131212 1965.1 1978.2 0.34 0.66 781.64 1969.8 0.24
P131222 1796.5 1800.2 0.23 0.21 1646.47 1792.8 -0.20
P132112 1443.3 1452.5 0.26 0.64 757.08 1447.5 0.29
P132122 1434.6 1448.1 0.34 0.94 2863.10 1443.8 0.64
P132212 1204.4 1206.1 0.05 0.14 958.65 1204.9 0.04
P132222 931.0 932.3 0.07 0.15 2466.29 931.7 0.08
P133112 1694.2 1711.7 0.43 1.03 991.68 1700.3 0.36
P133122 1392.0 1401.7 0.07 0.70 2016.18 1400.1 0.58
P133212 1198.3 1200.5 0.12 0.19 895.12 1198.2 -0.01
P133222 1151.8 1159.0 0.08 0.62 2640.94 1157.7 0.51
P121112 2251.9 2258.8 0.27 0.30 2094.06 2249.0 -0.13
P121122 2159.9 2161.4 0.18 0.07 4911.06 2153.8 -0.28
P121212 2220.0 2223.9 0.35 0.17 2304.13 2212.4 -0.34
P121222 2230.9 2238.6 0.17 0.34 5175.85 2232.5 0.07
P122112 2073.7 2094.5 0.31 1.00 3520.46 2085.0 0.54
P122122 1692.2 1709.0 0.24 1.00 7177.74 1703.8 0.69
P122212 1453.2 1469.2 0.18 1.10 4162.82 1465.9 0.87
P122222 1082.7 1087.2 0.17 0.41 7194.32 1083.9 0.11
P123112 1960.3 1971.7 0.23 0.58 3060.73 1966.7 0.33
P123122 1918.9 1941.6 0.23 1.18 9341.61 1932.7 0.72
P123212 1762.0 1769.8 0.18 0.44 3813.81 1765.8 0.22
P123222 1391.7 1393.9 0.11 0.16 5422.38 1392.4 0.05
Average 0.22 0.59 2255.02 0.27

Table 5.II: Results on instances of set F2
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Instance z∗BKS z∗avg stdev gapavg Tavg z∗best gapbest

Perl-12x2 203.98 203.98 0.00 0.00 0.16 203.98 0.00
Gas-21x5 424.90 424.90 0.00 0.00 1.24 424.90 0.00
Gas-22x5 585.11 585.11 0.00 0.00 2.54 585.11 0.00
Min-27x5 3062.02 3062.02 0.00 0.00 2.68 3062.02 0.00
Gas-29x5 512.10 512.10 0.00 0.00 4.53 512.10 0.00
Gas-32x5 562.22 562.25 0.03 0.00 5.04 562.22 0.00
Gas-32x5b 504.33 504.33 0.00 0.00 6.05 504.33 0.00
Gas-36x5 460.37 460.37 0.00 0.00 6.91 460.37 0.00
Chr-50x5ba 565.62 575.60 3.14 1.76 14.13 570.03 0.78
Chr-50x5be 565.60 580.98 10.20 2.72 15.26 565.60 0.00
Perl-55x15 1112.06 1112.66 0.54 0.05 42.14 1112.32 0.02
Chr-75x10ba 844.40 848.34 2.71 0.47 74.14 844.40 0.00
Chr-75x10be 848.85 853.87 1.38 0.59 84.97 850.93 0.24
Chr-75x10bmw 802.08 809.78 3.16 0.96 86.13 803.10 0.13
Perl-85x7 1622.50 1626.01 1.26 0.22 65.78 1623.86 0.08
Das-88x8 355.78 356.12 0.44 0.09 164.40 355.78 0.00
Chr-100x10 833.43 851.00 6.47 2.11 350.88 841.68 0.99
Min-134x8 5709.00 5816.73 66.78 1.89 1188.96 5719.25 0.18
Das-150x10 43963.60 44321.33 83.83 0.81 1311.31 44179.00 0.49
Average 9.47 0.61 180.38 0.15

Table 5.III: Results on instances of set F3

Instance z∗BKS z∗avg stdev gapavg Tavg z∗best gapbest

M-n150x14a 1352.93 1354.73 1.38 0.13 1089.83 1353.46 0.04
M-n150x14b 1212.46 1219.44 4.16 0.58 942.44 1215.14 0.22
M-n199x14a 1644.35 1645.97 1.74 0.10 3107.52 1644.35 0.00
M-n199x14b 1480.43 1488.37 2.53 0.54 3050.01 1483.55 0.21
Average 2.45 0.34 2047.45 0.12

Table 5.IV: Results on instances of set F4

Instances
GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

ppw-20x5 0.03 0.42 0.00 0.53 0.00 0.68 0.00 1.00 0.00 1.75
ppw-50x5 0.70 7.76 0.14 8.58 0.12 10.34 0.08 12.93 0.07 17.45
ppw-100x5 1.52 67.56 0.38 81.93 0.35 88.86 0.30 100.19 0.24 125.20
ppw-100x10 3.51 78.92 2.33 376.89 1.01 815.67 0.81 1033.83 0.62 1367.85
ppw-200x10 1.57 1036.77 0.60 1704.85 0.25 2633.61 0.19 3133.39 0.15 4128.62
Average 1.51 238.78 0.70 435.09 0.35 710.48 0.28 857.06 0.22 1129.22

Table 5.V: Algorithm evolution for instances of set F1

Instances
GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

100x10 2.24 93.71 0.72 100.64 0.64 118.31 0.56 146.15 0.53 192.84
100x20 1.82 147.23 0.40 165.46 0.36 220.71 0.34 297.23 0.31 455.64
150x10 3.11 490.65 1.24 543.03 1.13 626.82 1.10 716.21 1.05 909.59
150x20 2.71 678.91 0.67 771.96 0.60 1202.04 0.57 1533.36 0.53 2275.57
200x10 3.29 1591.95 1.02 1836.23 0.81 2409.46 0.71 2602.60 0.60 3159.34
200x20 3.63 2253.24 0.71 2540.08 0.59 4072.30 0.57 4732.70 0.53 6537.16
Average 2.80 875.95 0.79 992.90 0.69 1441.61 0.64 1671.38 0.59 2255.02

Table 5.VI: Algorithm evolution for instances of set F2
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Instances
GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

≤ 50 custs 1.18 2.41 0.65 2.56 0.57 3.06 0.50 4.13 0.45 5.85
> 50 custs 2.93 91.68 1.21 97.85 1.01 144.40 0.88 221.50 0.80 374.30
Average 2.01 44.69 0.91 47.70 0.78 70.01 0.68 107.09 0.61 180.38

Table 5.VII: Algorithm evolution for instances of set F3

Instances
GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

150 custs 5.42 677.23 0.43 759.88 0.40 817.56 0.36 892.03 0.35 1016.14
199 custs 6.15 2078.87 0.44 2362.29 0.35 2530.13 0.33 2689.19 0.32 3078.77
Average 5.78 1378.05 0.44 1561.08 0.38 1673.85 0.35 1790.61 0.34 2047.45

Table 5.VIII: Algorithm evolution for instances of set F4

Method
F1 F2 F §

3
gapavg Tavg gapavg Tavg gapavg Tavg

GRASP 3.60 96.5 3.42 159.56 1.49 21.15
MA|PM 1.38 76.7 1.78 203.13 2.01 37.8
LRGTS 0.74 17.5 1.76 21.24 1.64 18.21
VNS+ILP 0.86 6.7 – – – –
SALRP 0.41 422.4 1.41 826.4 0.27 140.46
ALNS 0.70 451.0 0.81 830.0 0.15 174.75
GRASP† 1.51 238.78 2.80 875.95 1.90 54.87
GRASP+SB‡ 0.70 435.09 0.79 992.90 1.01 57.74
GRASP+ILP 0.22 1129.22 0.59 2255.02 0.64 254.98
§ Subset of instances considered by all methods reporting results for F3

† Only considering the first stage of our method
‡ Only considering the first and second stages of our method

Table 5.IX: Comparison of average results

Instance z∗BKS z∗NEW Instance z∗BKS z∗NEW

ppw-100x10-1a 287983 287695 P111222 1432.3 1432.2
ppw-100x10-1b 231763 230989 P113212 902.3 902.2
ppw-200x10-1a 477248 475294 P113222 1018.3 1018.2
ppw-200x10-1b 378065 377043 P131122 1823.5 1823.2
ppw-200x10-2a 449571 449115 P131222 1796.5 1792.7
ppw-200x10-2b 374330 374280 P133212 1198.3 1198.2
ppw-200x10-3b 362817 362653 P121112 2251.9 2248.9

P121122 2159.9 2153.8
P121212 2220.0 2212.4
P121222 2230.9 2222.9

Table 5.X: New best known solutions



CHAPTER 6

CONCLUSIONS

This dissertation has addressed the capacitated location-routing problem (CLRP), an

important logistics problem combining operational with tactical and strategic planning,

which arises in many real-life applications, such as the location of warehouses or the

operation of city logistics systems [43]. The CLRP is an N P-hard problem as it com-

bines two other well known N P-hard problems, the CFLP and the CVRP. In the CLRP,

a planner must decide the locations of a series of facilities and schedule vehicle routes

so as to serve the demand of a known set of customers, at minimum cost. It is assumed

that the vehicle fleet is homogeneous and that the network is symmetric. Therefore, the

CLRP is also a simplification of the location-routing problem (LRP) in which some of

these assumptions are relaxed. Recent contributions to the solution of the CLRP exploit

these homogeneities and symmetries to derive compact models and tight formulations

which allow the exact solution of small and medium size instances. In this disserta-

tion, we also make use of such assumptions so as to derive stronger models and faster,

more efficient algorithms to solve the CLRP either exactly or heuristically in reasonable

computing times.

In Chapter 3 we introduce three new formulations for the CLRP, based on vehicle

and commodity flows. These formulations are shown to dominate the original two-index

vehicle-flow formulation of Belenguer et al. [19] in terms of the linear relaxation lower

bound. We introduce several new families of valid inequalities, strengthen some of the

existing ones, and present efficient separation algorithms that in many cases generalize

the separation procedures introduced by Belenguer et al. [19]. We compare the differ-

ent flow formulations on a large set of instances, concluding that compact two-index

vehicle-flow formulations are more efficient to handle the small and medium size in-

stances considered in our study. However, three-index formulations are able to obtain

better gaps on some instances and to scale better than two-index formulations, which

suggests that important information about the structure of the optimal solutions of the
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CLRP is lost or poorly represented in compact two-index formulations. We also com-

pare our implementation of the branch-and-cut algorithm on the two-index vehicle-flow

formulation against the method presented by Belenguer et al. [19]. Our method is able to

solve instances with up to 100 customers, whereas the original method of Belenguer et al.

[19] solves instances with up to 50 customers. Several refinements in our implementa-

tion explain these results, including the new valid inequalities, the efficient separation

algorithms as well as the separation strategy used in the branch-and-cut algorithm which

deactivates cuts that do not seem promising in a certain branch of the tree.

In Chapter 4 we introduce a branch-and-cut-and-price algorithm for the CLRP. We

consider the set-partitioning formulation of the problem for which we show how to incor-

porate all the valid inequalities from the flow formulations introduced in the Chapter 3.

We introduce five new families of valid inequalities which are shown to dominate some

of the inequalities introduced before that are specific for the set-partitioning formulation

of the CLRP. These new valid inequalities provide strong lower bounds. For the pricing

problems, we use the shortest path problem with resource constraints and without cycles

of length two or less (2-cyc-SPPRC), which normally provides lower bounds that are

weaker than the ones obtained when pricing on elementary routes (routes without cy-

cles). We propose a new family of degree constraints which force elementarity, allowing

us to obtain lower bounds close to the ones obtained when pricing on elementary routes

while still using 2-cyc-SPPRC as pricing algorithm. This is complemented with the

use of new fathoming rules and specific dominance rules so as to, among other things,

weaken the dominance with respect to the solution of the SPPRC with elementary routes

(ESPPRC). These refinements have allowed the solution of some large instances of the

CLRP containing up to 200 customers and improved its robustness by allowing the so-

lution of all instances containing strictly less than 100 customers. We compare our algo-

rithm against the state-of-the-art exact solvers for the CLRP, namely the branch-and-cut

algorithms of Belenguer et al. [19] and the one over the two-index vehicle-flow formu-

lation introduced in Chapter 3, and the branch-and-cut-and-price algorithm of Baldacci

et al. [16]. We can conclude that our algorithm outperforms the branch-and-cut methods

and is competitive against the branch-and-cut-and-price method of Baldacci et al. [16].
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In particular, we are able to solve all instances also solved by the method of Baldacci

et al. [16] plus four previously open instances, and we improve the best known solutions

for three more instances.

In Chapter 5 we introduce a new heuristic for the CLRP based on the sequential

application of a GRASP complemented with local search and followed by the solution

of a series of integer-linear programs (ILP). These ILPs are based on the solution of a

new model, the location-reallocation model (LRM) which generalizes the CFLP and the

reallocation model of de Franceschi et al. [48], the first by allowing the reallocation of

customers in the middle of routes, and the second by allowing the reallocation of routes

to different facilities. This model can also be seen as a constrained CLRP and also

inherits the cuts valid for the three-index formulations. In particular, we strengthen this

model by including some of the inequalities described in Chapter 3. We apply a simple

but efficient pricing algorithm and local branching strategies to solve the model quickly.

We propose two heuristics that are based on the solution of the LRM. A solution blender

(SB) heuristic takes the solutions available in a solution pool (initially we consider the

solutions obtained by our GRASP). Each of these solutions is represented by a set of

routes, and for each of the routes belonging to a solution, a replication step is used to

build another set of routes connected to each possible facility. The LRM is then solved

using as the initial set of columns the ones constructed during the replication step, and

without applying any column generation. The other heuristic method, also based on

the solution of the LRM, is what we call the local improvement heuristic (LIH). In the

LIH, a destroy operator is applied to a solution to remove from it a set of customers.

The destroyed solution is then repaired by solving the LRM, obtaining an eventually

new solution of better quality. Our heuristic method is shown to be competitive against

the existing methods. In particular, we obtain tighter average gaps than several of these

methods on a large set of instances, which show the efficiency of our heuristic.

As a general conclusion, this dissertation addresses the CLRP by proposing new

models and algorithms to solve it either exactly or heuristically, based on both pure

metaheuristics and mathematical programming techniques. The algorithms introduced

in this dissertation generalize existing methods in several respects. Moreover, our so-
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lution approaches include exact and heuristic algorithms, and depending on the needs

of a decision maker, some of them may be better suited in particular applications. Re-

markably, flow formulations seem to be the right choice for solving small or medium

size instances with few customers (normally less than 50) and few facilities (less than

10), while column generation-based algorithms scale better but their efficiency strongly

depends on the quality of the lower bounds obtained as well as the size of the solution

space in the dynamic programming pricing algorithms. Indeed, these methods usually

perform very well when capacities are tight and feasible routes visit a small number

of customers. In presence of loose capacities, the pricing algorithms require excessive

computing time. Finally, a heuristic method may suit in most cases the needs of a plan-

ner, for whom obtaining the optimal solution may not be relevant, but rather a solution

of good quality. The heuristic method introduced in this dissertation is shown to be one

of the most robust and reliable in the literature, providing the tightest gaps on average in

reasonable computing times.
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