12 research outputs found

    Associations Between Attention-Deficit/Hyperactivity Disorder and Various Eating Disorders : A Swedish Nationwide Population Study Using Multiple Genetically Informative Approaches

    Get PDF
    BACKGROUND: Although attention-deficit/hyperactivity disorder (ADHD) and eating disorders (EDs) frequently cooccur, little is known about the shared etiology. In this study, we comprehensively investigated the genetic association between ADHD and various EDs, including anorexia nervosa (AN) and other EDs such as bulimia nervosa. METHODS: We applied different genetically informative designs to register-based information of a Swedish nationwide population (N = 3,550,118). We first examined the familial coaggregation of clinically diagnosed ADHD and EDs across multiple types of relatives. We then applied quantitative genetic modeling in full-sisters and maternal half-sisters to estimate the genetic correlations between ADHD and EDs. We further tested the associations between ADHD polygenic risk scores and ED symptoms, and between AN polygenic risk scores and ADHD symptoms, in a genotyped population-based sample (N = 13,472). RESULTS: Increased risk of all types of EDs was found in individuals with ADHD (any ED: odds ratio [OR] = 3.97, 95% confidence interval [CI] = 3.81, 4.14; AN: OR = 2.68, 95% CI = 2.15, 2.86; other EDs: OR = 4.66, 95% CI = 4.47, 4.87; bulimia nervosa: OR = 5.01, 95% CI = 4.63, 5.41) and their relatives compared with individuals without ADHD and their relatives. The magnitude of the associations decreased as the degree of relatedness decreased, suggesting shared familial liability between ADHD and EDs. Quantitative genetic models revealed stronger genetic correlation of ADHD with other EDs (.37, 95% CI = .31, .42) than with AN (.14, 95% CI = .05, .22). ADHD polygenic risk scores correlated positively with ED symptom measures overall and with the subscales Drive for Thinness and Body Dissatisfaction despite small effect sizes. CONCLUSIONS: We observed stronger genetic association with ADHD for non-AN EDs than for AN, highlighting specific genetic correlation beyond a general genetic factor across psychiatric disorders.Peer reviewe

    Biological insights from 108 schizophrenia-associated genetic loci

    Get PDF
    Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia

    Genome-wide Association Study of Borderline Personality Disorder Reveals Genetic Overlap with Bipolar Disorder, Major Depression and Schizophrenia

    Get PDF
    Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case–control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10−7) and PKP4 (P=8.67 × 10−7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (rg=0.28 [P=2.99 × 10−3]), SCZ (rg=0.34 [P=4.37 × 10−5]) and MDD (rg=0.57 [P=1.04 × 10−3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    Genomic dissection of bipolar disorder and schizophrenia including 28 subphenotypes

    No full text
    Schizophrenia and bipolar disorder are two distinct diagnoses that share symptomology. Understanding the genetic factors contributing to the shared and disorder-specific symptoms will be crucial for improving diagnosis and treatment. In genetic data consisting of 53,555 cases (20,129 bipolar disorder [BD], 33,426 schizophrenia [SCZ]) and 54,065 controls, we identified 114 genome-wide significant loci implicating synaptic and neuronal pathways shared between disorders. Comparing SCZ to BD (23,585 SCZ, 15,270 BD) identified four genomic regions including one with disorder-independent causal variants and potassium ion response genes as contributing to differences in biology between the disorders. Polygenic risk score (PRS) analyses identified several significant correlations within case-only phenotypes including SCZ PRS with psychotic features and age of onset in BD. For the first time, we discover specific loci that distinguish between BD and SCZ and identify polygenic components underlying multiple symptom dimensions. These results point to the utility of genetics to inform symptomology and potential treatment.</p

    Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa.

    No full text
    Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness &lt;sup&gt;1&lt;/sup&gt; , affecting 0.9-4% of women and 0.3% of men &lt;sup&gt;2-4&lt;/sup&gt; , with twin-based heritability estimates of 50-60% &lt;sup&gt;5&lt;/sup&gt; . Mortality rates are higher than those in other psychiatric disorders &lt;sup&gt;6&lt;/sup&gt; , and outcomes are unacceptably poor &lt;sup&gt;7&lt;/sup&gt; . Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI) &lt;sup&gt;8,9&lt;/sup&gt; and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes
    corecore