
OPEN

ORIGINAL ARTICLE

Genome-wide association study of borderline personality
disorder reveals genetic overlap with bipolar disorder, major
depression and schizophrenia
SH Witt1,123, F Streit1,123, M Jungkunz2,3, J Frank1, S Awasthi4, CS Reinbold5, J Treutlein1, F Degenhardt6,7, AJ Forstner5,6,7,8,
S Heilmann-Heimbach6, L Dietl9, CE Schwarze10, D Schendel1, J Strohmaier1, A Abdellaoui11, R Adolfsson12, TM Air13, H Akil14, M Alda15,
N Alliey-Rodriguez16, OA Andreassen17,18, G Babadjanova19, NJ Bass20, M Bauer21, BT Baune13, F Bellivier22, S Bergen23, A Bethell24,
JM Biernacka25, DHR Blackwood26, MP Boks27, DI Boomsma11, AD Børglum28,29,30, M Borrmann-Hassenbach31, P Brennan32,
M Budde33,34, HN Buttenschøn35, EM Byrne36, P Cervantes37, T-K Clarke26, N Craddock38, C Cruceanu39, D Curtis40,41, PM Czerski42,
U Dannlowski43,44, T Davis13, EJC de Geus11, A Di Florio45, S Djurovic46,47, E Domenici48, HJ Edenberg49,50, B Etain51, SB Fischer5,
L Forty45, C Fraser45, MA Frye52, JM Fullerton53,54, K Gade33,34, ES Gershon16, I Giegling55, SD Gordon56, K Gordon-Smith57, HJ Grabe58,
EK Green59, TA Greenwood60, M Grigoroiu-Serbanescu61, J Guzman-Parra62, LS Hall26,63, M Hamshere38, J Hauser42, M Hautzinger64,
U Heilbronner34, S Herms5,6,7, S Hitturlingappa13, P Hoffmann5,6,7, P Holmans38, J-J Hottenga11, S Jamain51,65, I Jones24, LA Jones57,
A Juréus23, RS Kahn66, J Kammerer-Ciernioch67, G Kirov38, S Kittel-Schneider68, S Kloiber69,70,71, SV Knott57, M Kogevinas72,
M Landén23,73, M Leber74, M Leboyer75, QS Li76, J Lissowska77, S Lucae71, NG Martin56,78, F Mayoral-Cleries62, SL McElroy79,
AM McIntosh26,80, JD McKay81, A McQuillin82, SE Medland56, CM Middeldorp11, Y Milaneschi83, PB Mitchell84,85, GW Montgomery86,
G Morken87,88, O Mors89,90, TW Mühleisen91,92, B Müller-Myhsok39,93,94, RM Myers95, CM Nievergelt60, JI Nurnberger96, MC O'Donovan97,
LMO Loohuis98, R Ophoff99, L Oruc100, MJ Owen97, SA Paciga101, BWJH Penninx83, A Perry57, A Pfennig21, JB Potash102, M Preisig103,
A Reif68, F Rivas62, GA Rouleau104,105, PR Schofield53,54, TG Schulze1,33,34,106,107, M Schwarz108, L Scott109, GCB Sinnamon110,
EA Stahl111,112, J Strauss69, G Turecki37, S Van der Auwera58, H Vedder108, JB Vincent113, G Willemsen11, CC Witt114, NR Wray36,115,
HS Xi116, Bipolar Disorders Working Group of the Psychiatric Genomics Consortium, Major Depressive Disorder Working Group of the
Psychiatric Genomics Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, A Tadic117,118,
N Dahmen118, BH Schott4,119, S Cichon6,91,92,120, MM Nöthen6,7, S Ripke4,121,122, A Mobascher118, D Rujescu55, K Lieb118, S Roepke9,
C Schmahl2, M Bohus3 and M Rietschel1

Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability
and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show
comorbidity with BOR. This report describes the first case–control genome-wide association study (GWAS) of BOR, performed in one
of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and
(ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and
schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD.
GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium
score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed
no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD
(P= 4.42 × 10− 7) and PKP4 (P= 8.67 × 10− 7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887,
PFDR = 0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable
finding of the present study was the genetic overlap of BOR with BIP (rg = 0.28 [P= 2.99 × 10− 3]), SCZ (rg = 0.34 [P= 4.37 × 10− 5]) and
MDD (rg = 0.57 [P= 1.04 × 10− 3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the
genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies.
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INTRODUCTION
Borderline personality disorder (BOR; for the sake of readability,
we have decided to use the rather unconventional abbreviation
‘BOR’ for Borderline Personality Disorder and the abbreviation ‘BIP’
for Bipolar Disorder) is a complex neuropsychiatric disorder with a

lifetime prevalence of around 3%.1 Untreated cases often have a
chronic and severely debilitating clinical course.1 BOR affects up to
20% of all psychiatric inpatients, and is associated with high
health-care utilization. BOR therefore represents a substantial
socio-economic burden.2,3
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BOR is characterized by affective instability, emotional dysre-
gulation and poor interpersonal functioning.3 Suicide rates in BOR
range between 6 and 8%, and up to 90% of patients engage in
non-suicidal self-injurious behavior.4 Other prototypical features
include high-risk behaviors and impulsive aggression. Current
theories view dysfunctions in emotion processing, social interac-
tion and impulsivity as core psychological mechanisms of BOR.5

To date, genetic research into BOR has been limited. Available
genetic studies have involved small samples and focused on
candidate genes, while no genome-wide association study (GWAS)
of BOR patients has yet been performed.6 However, Lubke et al.7

conducted a GWAS of borderline personality features using data
from three cohorts comprising n= 5802, n= 1332 and n= 1301
participants, respectively. Using the borderline subscale of the
Personality Assessment Inventory (PAI-BOR), four borderline
personality features (affect instability, identity problems, negative
relations and self-harm) were assessed. The most promising signal
in the combined analysis of two samples was for seven SNPs in the
gene SERINC5, which encodes a protein involved in myelination.
Two of the SNPs could be replicated in the third sample.
Interestingly, here, the effect was highest for the affect instability
items, that is, features that are key characteristics of manic phases
of bipolar disorder (BIP).
Understanding of the pathogenesis of BOR remains limited.

Both environmental and genetic factors are known to have a role
in BOR etiology. Familial aggregation has been demonstrated,8,9

and heritability estimates from twin studies range from 35 to 65%,
with higher heritability estimates being obtained with self-
ratings.10–12

The potential comorbidity between BOR and BIP is part of an
ongoing debate. For example, Fornaro et al.13 report substantial
comorbidity of ~ 20% with BIP, whereas Tsanas et al.14 find clear
symptomatic differences between these two diagnostic groups.
BOR displays an overlap of some symptoms with BIP, such as
affective instability. In contrast, features such as dissociative
symptoms, a feeling of chronic emptiness and identity distur-
bances are specific to BOR.15 To date, no twin or family study has
generated conclusive results concerning a genetic overlap
between the two disorders.16,17 However, a twin study18 and a
large-population-based study using polygenic risk score
analyses19 indicate a genetic overlap between borderline person-
ality features and neuroticism, an established risk factor for BIP
and other psychiatric disorders.20

To the best of our knowledge, the present study represents the
first case–control GWAS in BOR, and was performed in one of the
largest BOR patient samples worldwide. Given the limited
heritability and the expected complex genetic architecture of
BOR, the sample is too small to generate significant results for
single markers. Instead, the main aim of the investigation was to
detect (i) genes and gene sets with a potential involvement in BOR;
and (ii) potential genetic overlap with BIP. As a substantial overlap
of common risk variants exists between BIP and schizophrenia
(SCZ), and to a lesser extent between BIP and major depressive
disorder (MDD), and as there is also a high comorbidity of BOR and
MDD, a further aim of the study was to determine whether any
observed genetic overlap between BOR and BIP, MDD and SCZ was
driven by disorder-specific genetic factors using linkage disequili-
brium (LD)-score regression and polygenic risk scores (PRS).

MATERIALS AND METHODS
Participants
The present sample comprised 1075 BOR patients and 1675 controls.21 All
the participants provided written informed consent before inclusion. The
study was approved by the respective local ethics committees.
The patients were recruited at the following German academic

institutions: Department of Psychosomatic Medicine, Central Institute of
Mental Health, Mannheim (n= 350); Department of Psychiatry and

Psychotherapy, University Medical Center Mainz (n= 231); and the
Department of Psychiatry, Charité, Campus Benjamin Franklin, Berlin
(n=494). Inclusion criteria for patients were: age 16 to 65 years; Central
European ancestry; and a lifetime DSM-IV diagnosis of BOR. The control
sample comprised 1583 unscreened blood donors from Mannheim, and 92
subjects recruited by the University Medical Center Mainz.

Clinical assessment
The diagnoses of BOR were assigned according to DSM-IV criteria and on
the basis of structured clinical interviews. The diagnostic criteria for BOR
were assessed using the German version of the IPDE22 or the SKID-II.23 All
the diagnostic interviews were conducted by trained and experienced
raters. BOR patients with a comorbid diagnosis of BIP or SCZ assessed with
SKID-I23 were excluded.

Genotyping
Automated genomic DNA extraction was performed using the chemagic
Magnetic Separation Module I (Chemagen Biopolymer-Technologie,
Baesweiler, Germany). Genotyping was performed using the Infinium
PsychArray-24 Bead Chip (Illumina, San Diego, CA, USA).

Quality control and imputation
A detailed description of the quality control and imputation procedures is
provided elsewhere.24

Briefly, quality control parameters for the exclusion of subjects and
single-nucleotide polymorphisms (SNPs) were: subject missingness 40.02;
autosomal heterozygosity deviation (|Fhet|40.2); SNP missingness40.02;
difference in SNP missingness between cases and controls 40.02; and SNP
Hardy–Weinberg equilibrium (Po10− 6 in controls; Po10− 10 in cases).
Genotype imputation was performed using the pre-phasing/imputation

stepwise approach in IMPUTE2/SHAPEIT (default parameters and a chunk
size of 3 Mb),25,26 using the 1000 Genomes Project reference panel (release
‘v3.macGT1’).27

Relatedness testing and population structure analysis were performed
using a SNP subset that fulfilled strict quality criteria (INFO40.8,
missingness o1%, minor allele frequency40.05), and which had been
subjected to LD pruning (r240.02). This subset comprised 63 854 SNPs. In
cryptically related subjects, one member of each pair (ðhat40.2) was
removed at random following the preferential retention of cases over
controls. Principal components (PCs) were estimated from genotype data
(see Supplementary Figures 1–6), and phenotype association was tested
using logistic regression. The impact of the PCs on genome-wide test
statistics was assessed using λ.

Association analysis
Including the first four PCs as covariates, an additive logistic regression
model was used to test single marker associations, as implemented in
PLINK.28 The P-value threshold for genome-wide significance was set at
5 × 10− 8.

Gene-based analysis
To determine whether genes harbored an excess of variants with small P-
values, a gene-based test was performed with MAGMA Version 1.04 (http://
ctg.cncr.nl/software/magma)29 using genotyped markers only, filtered with
a minor allele frequency41% (n=284 220). This test uses summary data
and takes LD between variants into account. SNPs within ± 10 kb of the
gene boundary were assigned to each gene. Obtained P-values were
Bonferroni-corrected for the number of tested genes (n=17 755,
P= 2.8 × 10− 6).

Gene-set analysis
Gene-set-based analysis was implemented using genotyped markers only,
filtered as above. As in the gene-based analysis, SNPs within ± 10 kb of the
gene boundary were assigned to each gene. Gene-set analyses were
carried out using Gene Ontology (GO, http://software.broadinstitute.org/
gsea/msigdb/) terms.
The discovery gene-set-based analysis was carried out using i-GSEA4G-

WASv2 (http://gsea4gwas-v2.psych.ac.cn/).30 The size of the gene sets was
restricted to 20–200 genes, and the major histocompatibility complex
region was excluded. In total, 674 gene sets were tested. The results were
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adjusted for multiple testing using false discovery rate (FDR). To validate
the significant finding, the respective gene set was investigated with (i)
GSA-SNP, using the P-value of the second-best SNP in each gene (https://
gsa.muldas.org)31 and (ii) MAGMA using summary data and a nominal P-
value threshold of Po0.05.

LD-score regression
To investigate a possible genetic overlap between BOR and SCZ, BIP and
MDD, LD-score regression was performed.32 Genetic correlations between
BOR and (i) BIP, (ii) SCZ and (iii) MDD were calculated33 using the result files
of the Psychiatric Genomics Consortium (PGC) meta-analyses for SCZ
(33 640 cases and 43 456 controls),34 BIP (20 352 cases and 31 358
controls)35 and MDD (16 823 cases and 25 632 controls).35 There was no
overlap in cases or controls of the present BOR GWAS sample with the PGC
samples.

Polygenic risk score
To determine the impact of polygenic risk on BOR and subgroups (that is,
BOR with and without MDD), PRS were calculated for each subject based
on the above-mentioned PGC data sets.
To obtain a highly informative SNP set with minimal statistical noise, the

following were excluded: low frequency SNPs (minor allele
frequency o0.1); low-quality variants (imputation INFO o0.9) and indels.
Subsequently, these SNPs were clumped discarding markers within 500 kb
of, and in high LD (r2⩾ 0.1) with, another more significant marker. From the
major histocompatibility complex region, only one variant with the
strongest significance was retained. PRS were calculated as described
elsewhere.36 This involved P-value thresholds 5 × 10− 8, 1 × 10− 6, 1 × 10− 4,
0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.0, and multiplication of the natural
logarithm of the odds ratio of each variant by the imputation probability
for the risk allele. The resulting values were then totaled. For each subject,
this resulted in one PRS for SCZ, MDD and BIP for each P-value threshold.
In a first step, the association of the PRS for BIP, SCZ and MDD with BOR

case–control status was analyzed using standard logistic regression and by
including the four PCs as covariates. For each P-value threshold, the
proportion of variance explained (Nagelkerke’s R2) in BOR case–control
status was computed by comparison of a full model (covariates+PRS) score
to a reduced model (covariates only).
For further exploratory analysis, the Po0.05 PRS for each disorder was

selected (that is, including all markers that reached nominal significance in
the training samples). To determine whether the different scores
contribute independently to the case–control status, a regression including
the PRS for MDD, SCZ and BIP and the four PCs was computed. In a
secondary analysis, two further models were computed. These included
the PRS for BIP and the PRS of either MDD or SCZ, while controlling for the
four PCs.
Furthermore, PRS were analyzed by differentiating between controls,

and patients with or without comorbid MDD. For each PRS, a linear model
was computed using the PRS as a dependent variable, disease state as an
independent variable and the four PCs as covariates. Differences between
groups were assessed using post hoc tests (Bonferroni-corrected).

RESULTS
Sample characteristics
Genetic quality control led to the exclusion of 207 subjects.
Reasons for exclusion were: (i) insufficient data quality (low call
rate), n= 6; (ii) relatedness, n= 63; and (iii) population outlier
status, n= 138. After quality control, the sample comprised 998
BOR cases (914 female/84 male) and 1545 controls (868 female/
677 male). Mean age for cases was 29.58 years (range: 18–65 years,
standard deviation (s.d. = 8.64)). Mean age for controls was 44.19
years (range: 18–72 years, s.d. = 13.24; details see Supplementary
Table 1). Of the 998 cases, 666 had comorbid lifetime MDD, and
262 did not (data missing for 40 cases).

Single marker analysis
A total of 10 736 316 single markers were included in the analysis.
As expected for GWAS on a complex psychiatric disorder with the
current sample size, the single marker analysis revealed no

significant hit after correction for multiple testing (see Figures 1
and 2). The most significant marker was rs113507694 in DPPA3 on
chromosome 12 (P= 2.01 × 10− 07; odds ratio = 0.35, minor allele
frequency = 0.03, INFO = 0.59). Single markers with Po1 × 10− 5

are listed in Supplementary Table 2.

Gene-based analysis
In the gene-based analysis, a total of 17 755 genes were tested.
Two genes showed significant association with BOR after
correction for multiple testing: the gene coding for Plakophilin-4
on chromosome 2 (PKP4; P= 8.24 × 10− 7); and the gene coding for
dihydropyrimidine dehydrogenase on chromosome 1 (DPYD,
P= 1.20 × 10− 6). The most significant genes (Po5 × 10− 4) are
listed in Table 1. The top hit of the previous GWAS of borderline
personality features, SERINC5, achieved nominal significance in the
present study (Puncorrected = 0.016).

Gene-set analysis
Gene-set analysis with i-GSEA4GWASv2 revealed one significant
gene set: exocytosis (GO: 0006887; PFDR = 0.019). Of 25 genes in
this gene set, 22 were mapped with variants and 15 showed
nominally significant associations. Details on significant and
nonsignificant genes in this gene set are provided in
Supplementary Table 3. All gene sets with Puncorrectedo0.01 are
shown in Table 2. A technical replication analysis with GSA-SNP
and MAGMA confirmed the gene-set exocytosis (GSA-SNP:
Puncorrected = 2.32 × 10− 4; MAGMA: Puncorrected = 0.056).

LD-score regression
Significant genetic correlations with BOR were found for BIP
(rg = 0.28; s.e. = 0.094; P= 2.99 × 10− 3), MDD (rg = 0.57; s.e. = 0.18;
P= 1.04 × 10− 3) and SCZ (rg = 0.34; s.e. = 0.082; P= 4.37 × 10− 5). A
meta-analytic comparison revealed no significant differences
between the correlations (all P40.13).

Polygenic risk score
PRS analysis revealed significant associations with BOR for the PRS
of BIP, MDD and SCZ. SCZ PRS were significant for all investigated
thresholds. BIP and MDD scores were significant for all PRS that
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Figure 1. Quantile–Quantile plot. Quantile–Quantile plot of the
case–control analysis (998 cases; 1545 controls) showing expected
and observed –log10 P-values. The shaded region indicates the 95%
confidence interval of expected P-values under the null hypothesis.
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included SNPs with P-values higher than 0.0001 and 0.001,
respectively (see Supplementary Table 4). The share of
variance explained in BOR case–control status (Nagelkerke’s R2)
by the respective PRS was up to 0.86% for BIP; up to 3.1%
for SCZ; and up to 2.1% for MDD (see Figure 3 and Supplementary
Table 4).
Simultaneous addition of the PRS for SCZ, BIP and MDD

(threshold Po0.05) to the regression model explained 4.4% of the

variance (Nagelkerke’s R2) in BOR case–control status. The PRS for
SCZ and the PRS for MDD were significant predictors
(P= 9.78 × 10− 9 and P= 1.9 × 10− 7, respectively). The PRS for BIP
was not a significant predictor in this model (P= 0.28).
A secondary analysis was then performed including (i) BIP PRS

with MDD PRS and (ii) BIP PRS with SCZ PRS. Here, BIP PRS
explained variance independently of MDD PRS (P= 0.0067), but
not of SCZ PRS (P= 0.11).
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Figure 2. Manhattan plot showing association results. Manhattan plot of the case–control analysis (998 cases; 1545 controls). For each single-
nucleotide polymorphism (SNP), the chromosomal position is shown on the x axis, and the –log10 P-value on the y axis. The red line indicates
genome-wide significance (Po5 × 10− 8) and the blue line indicates suggestive evidence for association (Po1 × 10− 5).

Table 1. Results of the gene-based analysis using MAGMA

GENE CHR START STOP NSNPS NPARAM ZSTAT P

PKP4 2 159303476 159547941 21 13 4.7924 8.24× 10− 7

DPYD 1 97533299 98396615 105 68 4.7162 1.20× 10− 6

GRAMD1B 11 123315191 123508478 34 28 3.8856 5.10× 10− 5

STX8 17 9143788 9489275 38 33 3.7984 7.28× 10− 5

BMP2 20 6738745 6770910 7 6 3.588 1.67× 10− 4

TRAF3IP1 2 239219185 239319541 11 8 3.5389 2.01× 10− 4

ZP3 7 76016841 76081388 9 7 3.5037 2.29× 10− 4

PINX1 8 10612473 10707394 19 11 3.5034 2.30× 10− 4

GTF3C4 9 135535728 135575471 4 4 3.4851 2.46× 10− 4

DNAH1 3 52340335 52444513 11 8 3.4543 2.76× 10− 4

YKT6 7 44230577 44263893 6 3 3.3841 3.57× 10− 4

CCSER1 4 91038684 92533370 111 78 3.3804 3.62× 10− 4

LRRC59 17 48448594 48484914 8 6 3.3716 3.74× 10− 4

TMEM71 8 133712191 133782914 9 8 3.3668 3.80× 10− 4

BAP1 3 52425020 52454121 3 3 3.345 4.11× 10− 4

AQR 15 35138552 35271995 8 6 3.3299 4.34× 10− 4

FGFR1 8 38258656 38336352 12 10 3.3162 4.56× 10− 4

Abbreviations: CHR, chromosome; NPARAM, number of parameters used in the model; NSNPS, number of single-nucleotide polymorphisms; P, P-value of gene;
ZSTAT, z-value of the gene. Most significant genes (Po5 × 10− 4) in the gene-based analysis and their chromosomal position. Genes in bold font were significant
after correction for multiple testing.
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Differentiation between cases with and without comorbid MDD
and controls revealed significant effects of BOR diagnosis on PRS
for BIP, SCZ and MDD (all Po0.001, see Figure 4). Post hoc
analyses revealed no differences in PRS for the BIP, SCZ or MDD
PRS of the BOR subgroup with comorbid MDD compared with the
BOR subgroup without MDD (all P40.5).
Compared with controls, PRS for SCZ and MDD were

significantly increased in the BOR subgroups with and without
comorbid MDD (all Po0.001). The PRS for BIP only showed a
significant difference to controls in the BOR subgroup with
comorbid MDD (Po0.001, see Figure 4).

DISCUSSION
The present study is the first case–control GWAS of BOR. As
expected, no genome-wide significant association was found for
any single marker. In the gene-based test, however, two genes
achieved genome-wide significance: dihydropyrimidine dehydro-
genase (DPYD) and Plakophilin-4 (PKP4). DPYD encodes a pyrimi-
dine catabolic enzyme, which is the initial and rate-limiting factor
in the pathway of uracil and thymidine catabolism. Genetic

deficiency of this enzyme results in an error in pyrimidine
metabolism.37 This is associated with thymine–uraciluria and an
increased risk of toxicity in cancer patients receiving 5-fluorouracil
chemotherapy (http://www.ncbi.nlm.nih.gov/gene/1806). Recent
PGC meta-analyses revealed an association between DPYD and
SCZ and BIP.34,38,39 DPYD contains a binding site for the micro-RNA
miR-137, which has previously been associated with schizo-
phrenia,40 and a previous exome-sequencing study reported two
putative functional de novo variants in DPYD in cases with SCZ.41

PKP4 is involved in the regulation of cell adhesion and cytoskeletal
organization.42 In pathway analyses of PGC GWAS data, cell
adhesion was associated with BIP,43 and SCZ,44 whereas cell
junction was implicated in MDD, as well as in an integrative
pathway analysis of all three disorders.45

SERINC5, which was the top hit of the previous GWAS of
Borderline personality features,7 achieved nominal significance in
the present study. The protein SERINC5 incorporates serine into
newly forming membrane lipids, and is enriched in myelin in the
brain.46 Previous research suggests that decreased myelination is
associated with a reduced capacity for social interaction.7,47

The gene-set analyses yielded significant results for exocytosis.
In neuronal synapses, exocytosis is triggered by an influx of
calcium and critically underlies synaptic signaling. Dysregulated
neuronal signaling and exocytosis are core features of neurode-
velopmental psychiatric disorders such as the autism spectrum
disorders and intellectual disability.48,49 Moreover, recent findings
from large meta-analyses have implicated dysregulated neuronal
signaling and exocytosis in the molecular mechanisms of BIP, SCZ
and MDD.48,50,51 These processes may now represent promising
starting points for further research into BOR.
The most interesting finding of this study is that BOR showed a

genetic overlap with BIP, SCZ and MDD. Notably, BIP did not show
a higher correlation with BOR (rg = 0.28) than SCZ (rg = 0.34) or
MDD (rg = 0.57). In view of the present sample size, these values
must be viewed with caution. A more accurate estimation of these
correlations will require calculations in larger cohorts.
Although comorbid BIP was excluded in the present BOR

patients, the possibility that the observed genetic overlap
between BOR and BIP was at least partly attributable to
misdiagnosis cannot be excluded. However, an alternative
explanation appears more likely, that is, that disorders currently
categorized as BOR and BIP share a common genetic background,
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Table 2. Results of the gene-set analysis

Gene-set name Number of
genes

P-value FDR
P-value

GO: EXOCYTOSIS 25 0.001 0.019
GO: RESPONSE TO ORGANIC
SUBSTANCE

30 0.002 0.173

GO: BRAIN DEVELOPMENT 51 0.003 0.888
GO: HORMONE METABOLIC
PROCESS

30 0.003 0.511

GO: PROTEIN C TERMINUS
BINDING

73 0.003 0.536

GO: LYSOSOME 53 0.007 0.785
GO: LYTIC VACUOLE 53 0.007 0.785
GO: MULTI-ORGANISM PROCESS 143 0.007 0.920

Abbreviations: FDR, false discovery rate; GO, Gene Ontology; P-value,
gene-set P-value. Most significant gene sets (uncorrected Po0.01) in the
gene-set analysis with i-GSEA4GWASv2 are listed. Gene sets in bold font
were significant after correction for multiple testing.
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and they also do so with SCZ and MDD. This hypothesis is
supported by the present observation of a genetic overlap
between BOR and SCZ, two disorders that are rarely misdiagnosed
by psychiatrists, despite the presence of common psychotic
symptoms.
An explanation could also be that the genetic commonality

between BOR and BIP, SCZ, and MDD might be due to a common
effect of MDD. Prior to the introduction of DSM-IV, a history of
MDD was required for a diagnosis of BIP, and MDD has a high
prevalence in patients with SCZ (25-85%).52,53 Therefore, the MDD
genetic risk variants that are common to BOR, BIP, and SCZ may
be responsible for the observed overlap. For this reason, we
conducted two further analyses. First, we compared PRS of BIP,
SCZ and MDD in subsamples of BOR patients with (~60%) and
without comorbid MDD. Here, no differences in any of the PRS
were found. Second, we performed a joint analysis of PRS of BIP,
SCZ and MDD in a logistic regression analysis in BOR patients vs
controls. Here, no differences were found in any of the PRS.
Second, we performed a joint analysis of the PRS of BIP, SCZ and
MDD in a logistic regression analysis in BOR patients vs controls.
Here, both the SCZ and the MDD risk score explained variance in
BOR case–control status independently. Secondary analysis
revealed that the BIP risk score explained variance independently
of the MDD risk score but not of the SCZ risk score. These results
indicate that comorbidity with MDD does not explain the genetic
overlap between BOR and BIP, SCZ and MDD. However, the
training sets differ in terms of their power to detect underlying risk
variants, and therefore the derived PRS differ in terms of the
variance they can explain.
It must be noted, that in the PGC-BIP, -SCZ and -MDD samples,

controls are partly overlapping. However, it is unlikely that this
drives the genetic correlation of BOR with those disorders as the
overlap of controls in these samples is rather small (under 10%).54

Also, the joint logistic regression analysis demonstrated that
polygenic risk for SCZ and MDD contributed independently to the
BOR risk (see above).
The present study had several limitations. First, despite being

one of the largest BOR samples available worldwide, the sample
size was small in terms of the estimation of heritability. Replication
of the present results is warranted in larger, independent cohorts.
This should include the investigation of non-European samples.
Second, no information was available on the presence of common
clinical features such as psychotic symptoms and affect instability.

This precluded detailed analysis of the identified genetic overlap.
Future studies in larger cohorts should also investigate more
detailed phenotypes, including comorbid axis I and axis II
disorders, such as addiction and personality disorders, respec-
tively. Third, the observation that psychiatric patients often
establish non-random relationships with persons affected by the
same or another psychiatric disorder,55 and therefore have
offspring with a higher genetic risk for psychiatric disorders,
might contribute to the observed genetic correlation of BOR with
BIP, SCZ and MDD. However, the LD-score method does not
investigate the impact of assortative mating.32 Therefore, assess-
ment of the degree to which this phenomenon may have
influenced the genetic correlation estimates was beyond the
scope of the present study.
Despite these limitations, the results indicate that neither

comorbidity with MDD nor risk variants that are exclusive to MDD
explain the genetic overlap between BOR and BIP, SCZ and MDD.
Future investigations of larger data sets for BOR and other
psychiatric disorders are warranted to refine the analysis of shared
and specific genetic risk.
Future studies are warranted to delineate the communalities

and specificities of the respective disorders.

CONCLUSION
In summary, the present study is the first GWAS of patients
diagnosed with BOR. The results suggest promising novel genes
and a novel pathway for BOR, and demonstrate that, rather than
being a discrete entity, BOR has an etiological overlap with the
major psychoses. The genetic overlap with BIP is consistent with
the observation that some diagnostic criteria for BOR overlap with
those for BIP. The overlap between BOR and SCZ and MDD is
consistent with previous observations of genetic overlap of other
psychiatric disorders.56 Given that BOR patients display specific
clinical symptoms not observed in patients with other psychiatric
disorders, knowledge of shared and non-shared genetic and
clinical features will be important for the development of
personalized treatment approaches.
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