531 research outputs found
Recommended from our members
Measures Available to Industrial Arts Teachers to Control Discipline in Industrial Arts Laboratories
This study was concerned with corrective and preventive measures available to and used by industrial arts teachers to maintain and control student discipline in industrial arts laboratories
Sample Size in Behavioral Research: A Systematic Review of JEAB and JABA from 2009 to 2018
The current research conducted a systematic review on sample size and the use of inferential statistics in basic and applied behavioral research by assessing all experimental studies from 2009 to 2018 in the Journal of the Experimental Analysis of Behavior (JEAB) and the Journal of Applied Behavior Analysis (JABA) which was 1,155 articles. The use or non-use of inferential statistics in behavioral research remains controversial as visual inspection has deep historical roots. JEAB had a median number of eight subjects and JABA had a median number of four subjects, which was statistically different using Mood’s median test. In addition, articles in JEAB were more likely to use inferential statistics compared to JABA. In general, inferential statistics were used in the presence of larger sample sizes, however, the use of animal subjects was associated with smaller sample sizes. Although patterns of the use of inferential statistics varied across journal, sample size, and species, this does not preclude the use of statistical methods by applied behavioral researchers, which should be used to support and confirm visual inspections of data. Keywords: sample size, inferential statistics, behavioral research, systematic review
Micro-Hall Magnetometry Studies of Thermally Assisted and Pure Quantum Tunneling in Single Molecule Magnet Mn12-Acetate
We have studied the crossover between thermally assisted and pure quantum
tunneling in single crystals of high spin (S=10) uniaxial single molecule
magnet Mn12-acetate using micro-Hall effect magnetometry. Magnetic hysteresis
experiments have been used toinvestigate the energy levels that determine the
magnetization reversal as a function of magnetic field and temperature. These
experiments demonstrate that the crossover occurs in a narrow (~0.1 K) or broad
(~1 K) temperature interval depending on the magnitude and direction of the
applied field. For low external fields applied parallel to the easy axis, the
energy levels that dominate the tunneling shift abruptly with temperature. In
the presence of a transverse field and/or large longitudinal field these energy
levels change with temperature more gradually. A comparison of our experimental
results with model calculations of this crossover suggest that there are
additional mechanisms that enhance the tunneling rate of low lying energy
levels and broaden the crossover for small transverse fields.Comment: 5 pages, 5 figure
Holocene climate and environmental change in north-eastern Kamchatka (Russian Far East), inferred from a multi-proxy study of lake sediments
The study was supported by the Swedish Research Council through grants 621-2004-5224 and 621-2005-4444 to K.D. Bennett. A. Self and N. Solovieva acknowledge S. Brooks and V. Jones and were supported by NERC grant NE/H008160/1.A sediment record from a small lake in the north-eastern part of the Kamchatka Peninsula has been investigated in a multi-proxy study to gain knowledge of Holocene climatic and environmental change. Pollen, diatoms, chironomids and selected geochemical parameters were analysed and the sediment record was dated with radiocarbon. The study shows Holocene changes in the terrestrial vegetation as well as responses of the lake ecosystem to catchment maturity and multiple stressors, such as climate change and volcanic eruptions. Climate change is the major driving force resulting in the recorded environmental changes in the lake, although recurrent tephra deposition events also contributed. The sediment record has an age at the base of about 10,000 cal yrs BP, and during the first 400 years the climate was cold and the lake exhibited extensive ice-cover during winter and relatively low primary production. Soils in the catchment were poor with shrub alder and birches dominating the vegetation surrounding the lake. At about 9600–8900 cal yrs BP the climate was cold and moist, and strong seasonal wind stress resulted in reduced ice-cover and increased primary production. After ca. 8900 cal yrs BP the forest density increased around the lake, runoff decreased in a generally drier climate resulting in decreased primary production in the lake until ca. 7000 cal yrs BP. This generally dry climate was interrupted by a brief climatic perturbation, possibly attributed to the 8.2 ka event, indicating increasingly windy conditions with thick snow cover, reduced ice-cover and slightly elevated primary production in the lake. The diatom record shows maximum thermal stratification at ca. 6300–5800 cal yrs BP and indicates together with the geochemical proxies a dry and slightly warmer climate resulting in a high productive lake. The most remarkably change in the catchment vegetation occurred at ca. 4200 cal yrs BP in the form of a conspicuous increase in Siberian dwarf pine (Pinus pumila), indicating a shift to a cooler climate with a thicker and more long-lasting snow cover. This vegetational change was accompanied by marked shifts in the diatom and chironomid stratigraphies, which are also indicative of colder climate and more extensive ice-cover.Publisher PDFPeer reviewe
Constraints on Earth system functioning at the Paleocene-Eocene Thermal Maximum from the marine silicon cycle
The Paleocene‐Eocene Thermal Maximum (PETM, ca. 56 Ma) is marked by a negative carbon isotope excursion (CIE) and increased global temperatures. The CIE is thought to result from the release of 13C‐depleted carbon, although the source(s) of carbon and triggers for its release, its rate of release, and the mechanisms by which the Earth system recovered are all debated. Many of the proposed mechanisms for the onset and recovery phases of the PETM make testable predictions about the marine silica cycle, making silicon isotope records a promising tool to address open questions about the PETM. We analyzed silicon isotope ratios (δ30Si) in radiolarian tests and sponge spicules from the Western North Atlantic (ODP Site 1051) across the PETM. Radiolarian δ30Si decreases by 0.6‰ from a background of 1‰ coeval with the CIE, while sponge δ30Si remains consistent at 0.2‰. Using a box model to test the Si cycle response to various scenarios, we find the data are best explained by a weak silicate weathering feedback, implying the recovery was mostly driven by nondiatom organic carbon burial, the other major long‐term carbon sink. We find no resolvable evidence for a volcanic trigger for carbon release, or for a change in regional oceanography. Better understanding of radiolarian Si isotope fractionation and more Si isotope records spanning the PETM are needed to confirm the global validity of these conclusions, but they highlight how the coupling between the silica and carbon cycles can be exploited to yield insight into the functioning of the Earth system
Hubble Space Telescope studies of low-redshift Type Ia supernovae: Evolution with redshift and ultraviolet spectral trends
We present an analysis of the maximum light, near ultraviolet (NUV; 2900-5500
A) spectra of 32 low redshift (0.001<z<0.08) Type Ia supernovae (SNe Ia),
obtained with the Hubble Space Telescope (HST). We combine this spectroscopic
sample with high-quality gri light curves obtained with robotic telescopes to
measure photometric parameters, such as stretch, optical colour, and
brightness. By comparing our data to a comparable sample of SNe Ia at
intermediate-z (0.4<z<0.9), we detect modest spectral evolution (3-sigma), in
the sense that our mean low-z NUV spectrum has a depressed flux compared to its
intermediate-z counterpart. We also see a strongly increased dispersion about
the mean with decreasing wavelength, confirming the results of earlier surveys.
These trends are consistent with changes in metallicity as predicted by
contemporary SN Ia spectral models. We also examine the properties of various
NUV spectral diagnostics in the individual spectra. We find a general
correlation between stretch and the velocity (or position) of many NUV spectral
features. In particular, we observe that higher stretch SNe have larger Ca II
H&K velocities, that also correlate with host galaxy stellar mass. This latter
trend is probably driven by the well-established correlation between stretch
and stellar mass. We find no trends between UV spectral features and optical
colour. Mean spectra constructed according to whether the SN has a positive or
negative Hubble residual show very little difference at NUV wavelengths,
indicating that the NUV evolution and variation we identify do not directly
correlate with Hubble residuals. Our work confirms and strengthens earlier
conclusions regarding the complex behaviour of SNe Ia in the NUV spectral
region, but suggests the correlations we find are more useful in constraining
progenitor models than improving the use of SNe Ia as cosmological probes.Comment: 22 pages, 14 figures, accepted in MNRAS with minor changes - Spectra
are available on WISeREP, http://www.weizmann.ac.il/astrophysics/wiserep
Limits on dust emission from z~5 LBGs and their local environments
We present 1.2mm MAMBO-2 observations of a field which is over-dense in Lyman
Break Galaxies (LBGs) at z~5. The field includes seven
spectroscopically-confirmed LBGs contained within a narrow (z=4.95+/-0.08)
redshift range and an eighth at z=5.2. We do not detect any individual source
to a limit of 1.6 mJy/beam (2*rms). When stacking the flux from the positions
of all eight galaxies, we obtain a limit to the average 1.2 mm flux of these
sources of 0.6mJy/beam. This limit is consistent with FIR imaging in other
fields which are over-dense in UV-bright galaxies at z~5. Independently and
combined, these limits constrain the FIR luminosity (8-1000 micron) to a
typical z~5 LBG of LFIR<~3x10^11 Lsun, implying a dust mass of Mdust<~10^8 Msun
(both assuming a grey body at 30K). This LFIR limit is an order of magnitude
fainter than the LFIR of lower redshift sub-mm sources (z~1-3). We see no
emission from any other sources within the field at the above level. While this
is not unexpected given millimetre source counts, the clustered LBGs trace
significantly over-dense large scale structure in the field at z = 4.95. The
lack of any such detection in either this or the previous work, implies that
massive, obscured star-forming galaxies may not always trace the same
structures as over-densities of LBGs, at least on the length scale probed here.
We briefly discuss the implications of these results for future observations
with ALMA.Comment: 10 pages, 6 figures, MNRAS Accepte
Spectra of High-Redshift Type Ia Supernovae and a Comparison with their Low-Redshift Counterparts
We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which
were discovered by the Supernova Cosmology Project as part of a campaign to
measure cosmological parameters. The spectra are used to determine the redshift
and classify the supernova type, essential information if the supernovae are to
be used for cosmological studies. Redshifts were derived either from the
spectrum of the host galaxy or from the spectrum of the supernova itself. We
present evidence that these supernovae are of Type Ia by matching to spectra of
nearby supernovae. We find that the dates of the spectra relative to maximum
light determined from this fitting process are consistent with the dates
determined from the photometric light curves, and moreover the spectral
time-sequence for SNe Type Ia at low and high redshift is indistinguishable. We
also show that the expansion velocities measured from blueshifted CaHK are
consistent with those measured for low-redshift Type Ia supernovae. From these
first-level quantitative comparisons we find no evidence for evolution in SNIa
properties between these low- and high-redshift samples. Thus even though our
samples may not be complete, we conclude that there is a population of SNe Ia
at high redshift whose spectral properties match those at low redshift.Comment: Accepted for publication in AJ. Also available at
http://supernova.lbl.gov
Nearby Supernova Factory Observations of SN 2007if: First Total Mass Measurement of a Super-Chandrasekhar-Mass Progenitor
We present photometric and spectroscopic observations of SN 2007if, an
overluminous (M_V = -20.4), red (B-V = 0.16 at B-band maximum), slow-rising
(t_rise = 24 days) type Ia supernova in a very faint (M_g = -14.10) host
galaxy. A spectrum at 5 days past B-band maximum light is a direct match to the
super-Chandrasekhar-mass candidate SN Ia 2003fg, showing Si II and C II at
~9000 km/s. A high signal-to-noise co-addition of the SN spectral time series
reveals no Na I D absorption, suggesting negligible reddening in the host
galaxy, and the late-time color evolution has the same slope as the Lira
relation for normal SNe Ia. The ejecta appear to be well mixed, with no strong
maximum in I-band and a diversity of iron-peak lines appearing in
near-maximum-light spectra. SN2007 if also displays a plateau in the Si II
velocity extending as late as +10 days, which we interpret as evidence for an
overdense shell in the SN ejecta. We calculate the bolometric light curve of
the SN and use it and the \ion{Si}{2} velocity evolution to constrain the mass
of the shell and the underlying SN ejecta, and demonstrate that SN2007 if is
strongly inconsistent with a Chandrasekhar-mass scenario. Within the context of
a "tamped detonation" model appropriate for double-degenerate mergers, and
assuming no host extinction, we estimate the total mass of the system to be 2.4
+/- 0.2 solar masses, with 1.6 +/- 0.1 solar masses of nickel-56 and with
0.3-0.5 solar masses in the form of an envelope of unburned carbon/oxygen. Our
modeling demonstrates that the kinematics of shell entrainment provide a more
efficient mechanism than incomplete nuclear burning for producing the low
velocities typical of super-Chandrasekhar-mass SNeIa.Comment: 23 pages, 13 figures, 4 tables, emulateapj format; v2 fixed some
typos and added a reference; v3 included minor copy-editing changes + fixed
typos in Figure 9, Table 4; accepted to Ap
Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.
We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models
- …