169 research outputs found

    Researchers Who Surf: Riding the Waves of Analysis in Self-Study Research

    Get PDF
    In this paper, two beginning qualitative researchers describe the challenges and successes of conducting a collaborative self-study. For two academic years, the authors wrote and analyzed personal narratives related to their experiences as a lesbian and a gay man, respectively, in educational contexts. This article addresses the data analysis phase of the research process. The authors attempt to make visible their analytic process in hopes that their struggles might be useful to those who conduct similar research. They rely on the metaphor of waves to capture what it was like to engage in their analytic work. Their experience demonstrates the importance of viewing data analysis as a fluid process that involves reflexivity, perseverance, and flexibility

    Hybrid Bermudagrass Responses to Impaired Water Sources

    Get PDF
    Low-quality (i.e., impaired) water sources are commonly used to irrigate warm-season turfgrass landscapes as a result of limited supplies of potable water sources. Currently, there is great need to define the impacts of impaired water sources on turfgrass water consumption, growth, and quality. The objectives of this study were to characterize actual evaporation (ETa), clipping production, and quality of three hybrid bermudagrass varieties [‘TifTuf’, ‘Tifway’, and ‘Midiron’; Cynodon dactylon (L.) Pers. × C. traansvalensis Burtt Davy] grown under three water sources [reverse osmosis (RO), local well, and recycled], each supplied at full irrigation levels (1.0 × ETa) over two 8-week study periods. When pooling across water source and date, TifTuf maintained the highest visual quality and normalized difference vegetation index (NDVI) compared with both Midiron and Tifway. This was accompanied by a greater daily ETa rate, clipping production, and water use efficiency (WUE) compared with Midiron in both studies. When pooling across variety and date, daily ETa of turfgrass receiving recycled water was 5% to 10% less than those receiving the local well or RO water. In addition, turfgrasses receiving local well water held the greatest visual quality and NDVI compared with those receiving either RO water in the summer study. Visual quality and NDVI were also less in turfgrasses receiving RO water compared with those receiving local well or recycled water in the fall. Despite turfgrasses having a lower ETa under recycled water in both study periods, these plants had significantly greater clipping production compared with RO water in the summer. Also, clipping production under recycled water did not differ significantly from the other two sources in the fall study. Furthermoe, in both studies, WUE was similar for turfgrasses receiving recycled water compared with those receiving RO or local well water. Results demonstrated that irrigation water quality influences critical factors for hybrid bermudagrass growth and that considerable variability exists among three commercially available varieties for evapotranspiration rates, quality, and clipping production

    Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles

    Get PDF
    GPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure-function relationship studies of GPR17 signaling and metabolic disease

    Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Full text link
    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5 figures, 8 tables

    The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae

    Full text link
    Astronomical observations suggest that today's Universe is dominated by a dark energy of unknown physical origin. One of the most notable consequences in many models is that dark energy should cause the expansion of the Universe to accelerate: but the expansion rate as a function of time has proven very difficult to measure directly. We present a new determination of the cosmic expansion history by combining distant supernovae observations with a geometrical analysis of large-scale galaxy clustering within the WiggleZ Dark Energy Survey, using the Alcock-Paczynski test to measure the distortion of standard spheres. Our result constitutes a robust and non-parametric measurement of the Hubble expansion rate as a function of time, which we measure with 10-15% precision in four bins within the redshift range 0.1 < z < 0.9. We demonstrate that the cosmic expansion is accelerating, in a manner independent of the parameterization of the cosmological model (although assuming cosmic homogeneity in our data analysis). Furthermore, we find that this expansion history is consistent with a cosmological-constant dark energy.Comment: 13 pages, 7 figures, accepted for publication by MNRA

    The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

    Get PDF
    We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A new method of defining the 'homogeneity scale' is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z=1) we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(<r) in spheres of comoving radius r is proportional to r^3 within 1%, or equivalently the fractal dimension of the sample is within 1% of D_2=3, at radii larger than 71 \pm 8 Mpc/h at z~0.2, 70 \pm 5 Mpc/h at z~0.4, 81 \pm 5 Mpc/h at z~0.6, and 75 \pm 4 Mpc/h at z~0.8. We demonstrate the robustness of our results against selection function effects, using a LCDM N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the LCDM N-body simulation and an analytical LCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2=2.97 on scales from ~80 Mpc/h up to the largest scales probed by our measurement, ~300 Mpc/h, at 99.99% confidence.Comment: 21 pages, 16 figures, accepted for publication in MNRA

    Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma

    Get PDF
    A major limitation of targeted cancer therapy is the rapid emergence of drug resistance, which often arises through mutations at or downstream of the drug target or through intrinsic resistance of subpopulations of tumor cells. Medulloblastoma (MB), the most common pediatric brain tumor, is no exception, and MBs that are driven by sonic hedgehog (SHH) signaling are particularly aggressive and drug-resistant. To find new drug targets and therapeutics for MB that may be less susceptible to common resistance mechanisms, we used a developmental phosphoproteomics approach in murine granule neuron precursors (GNPs), the developmental cell of origin of MB. The protein kinase CK2 emerged as a driver of hundreds of phosphorylation events during the proliferative, MB-like stage of GNP growth, including the phosphorylation of three of the eight proteins commonly amplified in MB. CK2 was critical to the stabilization and activity of the transcription factor GLI2, a late downstream effector in SHH signaling. CK2 inhibitors decreased the viability of primary SHH-type MB patient cells in culture and blocked the growth of murine MB tumors that were resistant to currently available Hh inhibitors, thereby extending the survival of tumor-bearing mice. Because of structural interactions, one CK2 inhibitor (CX-4945) inhibited both wild-type and mutant CK2, indicating that this drug may avoid at least one common mode of acquired resistance. These findings suggest that CK2 inhibitors may be effective for treating patients with MB and show how phosphoproteomics may be used to gain insight into developmental biology and pathology

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A
    • …
    corecore