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ABSTRACT

We have made the largest volume measurement to date of the transition to large-scale homo-
geneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of
over 200000 blue galaxies in a cosmic volume of ~1 /473 Gpc?. A new method of defining
the ‘homogeneity scale’ is presented, which is more robust than methods previously used in
the literature, and which can be easily compared between different surveys. Due to the large
cosmic depth of WiggleZ (up to z = 1), we are able to make the first measurement of the tran-
sition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(< r) in
spheres of comoving radius r is proportional to 7> within 1 per cent, or equivalently the fractal
dimension of the sample is within 1 per cent of D, = 3, at radii larger than 71 4= 8 =~ 'Mpc at
7~02,70£5h"Mpcatz~04,81 =5h'Mpcatz~0.6and 75 =4 h~' Mpc at z~ 0.8.
We demonstrate the robustness of our results against selection function effects, using a A cold
dark matter (ACDM) N-body simulation and a suite of inhomogeneous fractal distributions.
The results are in excellent agreement with both the ACDM N-body simulation and an ana-
lytical ACDM prediction. We can exclude a fractal distribution with fractal dimension below
D, = 2.97 on scales from ~80 2~ Mpc up to the largest scales probed by our measurement,
~300 A~! Mpc, at 99.99 per cent confidence.

Key words: surveys — galaxies: statistics — cosmology: observations — large-scale structure
of Universe.
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1 INTRODUCTION

One of the main assumptions of the standard theory of cosmology,
A cold dark matter (ACDM; based on CDM and a cosmologi-
cal constant), is that the Universe is homogeneous and isotropic
on large scales, and hence can be described by the Friedmann—
Robertson—Walker (FRW) metric. ‘Homogeneous’ means that its
statistical properties (such as density) are translationally invariant;
‘isotropic’ means it should be rotationally invariant. The Universe
clearly deviates from this on small scales, where galaxies are clus-
tered, but on large enough scales (=100 4! Mpc in ACDM), the
distribution of matter is assumed to be ‘statistically homogeneous’
—i.e. the small-scale inhomogeneities can be considered as pertur-
bations, which have a statistical distribution that is independent of
position. However, this is merely an assumption, and it is important
for it to be accurately verified by observation. Over the last decade,
there has been a debate in the literature as to whether the Universe
really is homogeneous, or whether it has a fractal-like structure ex-
tending to large scales. It is important to resolve this contention if
we are to be justified in assuming the FRW metric.

In fact, although ACDM is based on the assumption of large-
scale homogeneity and an FRW metric, inflation (which ACDM
incorporates) actually predicts a certain level of density fluctuations
on all scales. Inflation predicts that the primordial density power
spectrum was close to scale invariant. In the standard model, the
scalar index n,, which quantifies the scale dependence of the pri-
mordial power spectrum, is close to 0.96 (Baumann 2009), while
a scale-invariant power spectrum has n, = 1. In this case, these
density fluctuations induce fluctuations in the metric, §&®, which
are virtually independent of scale, and are of the order of §®/c> ~
1073 (Peacock 1999). Since these perturbations are small, the FRW
metric is still valid, but it means that we expect the Universe to have
a gradual approach to large-scale homogeneity rather than a sudden
transition.

The most important implication of inhomogeneity is the so-called
‘averaging problem’ in general relativity (GR). This arises when we
measure ‘average’ quantities (such as the correlation function and
power spectrum, and parameters such as the Hubble constant) over
a spatial volume. In doing so, we assume the volume is homoge-
neous and smooth, when it may not be. Since the Einstein equations
are non-linear, density fluctuations can affect the evolution of the
average properties of the volume — this is known as the ‘backreac-
tion mechanism’ (e.g. Buchert 2000; Ellis & Buchert 2005; Li &
Schwarz 2007; see Résénen 2011, for a summary). If we observe
a quantity within such a volume, we need to take averaging into
account to compare it with theory. It is therefore important to know
how much inhomogeneity is present, in order to obtain meaningful
results from averaged measurements (and hence most, if not all,
cosmological measurements).

Backreaction has also been proposed as an explanation of dark
energy, which is believed to be a negative-pressure component of
the Universe that drives the accelerated expansion. Some authors
have suggested that instead of introducing exotic new forms of dark
energy, or modifications to GR, we should revisit the fundamen-
tal assumptions of the ACDM model, such as homogeneity. If we
assume that GR holds, but take inhomogeneities into account, it
can be shown that backreaction can cause a global cosmic accel-
eration, without any additional dark energy component (see e.g.
Schwarz 2002; Kolb et al. 2005; Risdanen 2006, 2011; Wiltshire
2007a; Buchert 2008). This effect appears to be too small to ex-
plain the observed acceleration, but highlights the importance of
understanding the amount of inhomogeneity in the Universe.
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Another, related, consequence of inhomogeneity is that it can
affect the path travelled by light rays, and the calibration of clocks
and rods of observers. It can therefore affect distance measure-
ments, such as redshifts and luminosity distances (Wiltshire 2009;
Meures & Bruni 2011). This has also been proposed as a possible
explanation of the observed cosmic acceleration, although the effect
appears to be of the order of only a few per cent at z ~ 1 (Brouzakis,
Tetradis & Tzavara 2007).

Homogeneity is required by several important statistical probes
of cosmology, such as the galaxy power spectrum and n-point corre-
lation functions, in order for them to be meaningful. Applying these
to a galaxy sample below the scale of homogeneity would be prob-
lematic, since, if a distribution has no transition to homogeneity, it
does not have a defined mean density, which is required to calculate
and interpret these statistics. It is also not possible to model its cos-
mic variance, so the error in the measurements would be ill defined,
making it impossible to relate these statistics to a theoretical model.
It is therefore important to quantify the scale on which the Universe
becomes close enough to homogeneous to justify their use.

Large-scale homogeneity is already well supported by a number
of different observations. In particular, the high degree of isotropy
of the cosmic microwave background (CMB; Fixsen et al. 1996)
gives very strong support for large-scale homogeneity in the early
Universe, at redshift z ~ 1100. The isotropy of the CMB also in-
dicates the Universe has remained homogeneous, since there are
no significant integrated Sachs—Wolfe (ISW) effects distorting our
view of the isotropic CMB (Wu, Lahav & Rees 1999). Other high-
redshift evidence for homogeneity includes the isotropy of the
X-ray background (Peebles 1993; Scharf et al. 2000), believed to be
emitted by high-redshift sources, and the isotropy of radio sources
at z ~ 1 (Blake & Wall 2002).

However, these measurements of high-redshift isotropy do not
necessarily imply homogeneity of the present Universe. If every
point in the Universe is isotropic, then this implies the Universe
is homogeneous; so if we accept the Copernican principle that our
location is non-special, then the observed isotropy should imply ho-
mogeneity (Peacock 1999).! However, most of these measurements
(except the ISW effect) only tell us about the high-redshift Universe.
‘We know that it has evolved to a clustered distribution since then,
and it is possible that it could also have become anisotropic. It is
also possible for the matter distribution to be homogeneous, while
the galaxy distribution is not, since the galaxy distribution is biased
relative to the matter field (Kaiser 1984) — although since galaxy
bias is known to be linear on large scales (Coles 1993; Scherrer
& Weinberg 1998), this seems unlikely. The ISW effect (Sachs &
Wolfe 1967) gives information about the low-redshift Universe,
since it mostly probes the dark energy dominated era, z < 1
(Afshordi 2004), but it is an integral over the line of sight and
so does not give full 3D information.

Galaxy surveys are the only 3D probe of homogeneity in the
nearby Universe, and a number of homogeneity analyses have been
carried out with different surveys, with seemingly conflicting re-
sults. Most statistical methods used to measure homogeneity have
been based on the simple ‘counts-in-spheres’ measurement, i.e. the
number of galaxies N(< r) in spheres of radius r centred on galax-
ies, averaged over a large number of such spheres. This quantity

' We note that the Copernican principle is not incompatible with an inho-
mogeneous Universe. It assumes only that our location is non-special, not
that every location is the same (Joyce et al. 2000; Clifton, Ferreira & Land
2008; Sylos Labini, Vasilyev & Baryshev 2009).
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scales in proportion to the volume (r*) for a homogeneous distri-
bution, and homogeneity is said to be reached at the scale above
which this holds. Hogg et al. (2005) applied this to the Sloan Dig-
ital Sky Survey (SDSS) luminous red galaxy (LRG) sample at z ~
0.3, and found that the data became consistent with homogeneity
at~70 h~! Mpc for this galaxy population (using a different method
of determining the homogeneity scale than we do).

This measurement can also be extended to a fractal analysis.
Fractal dimensions can be used to quantify clustering; they quantify
the scaling of different moments of galaxy counts-in-spheres, which
in turn are related to the n-point correlation functions. The most
commonly used is the correlation dimension D, (r), which quantifies
the scaling of the two-point correlation function, and is based on
the counts-in-spheres, which scale as N(<r) ~ rP2. One can also
consider the more general dimensions D,, where g are different
moments of the counts-in-spheres. Using fractal analyses, some
researchers have found a transition from D, < 3 to D, = 3, at around
70-150 ™! Mpc (Martinez & Coles 1994; Guzzo 1997; Martinez
etal. 1998; Scaramella et al. 1998; Amendola & Palladino 1999; Pan
& Coles 2000; Kurokawa, Morikawa & Mouri 2001; Yadav et al.
2005; Sarkar et al. 2009), whereas other authors have found no
such transition (Coleman & Pietronero 1992; Pietronero, Montuori
& Sylos Labini 1997; Sylos Labini, Montuori & Pietronero 1998;
Joyce, Montuori & Sylos Labini 1999; Sylos Labini et al. 2009;
Sylos Labini 2011). However, many of the galaxy redshift surveys
used in the above-mentioned works are too shallow, sparse, or have
survey geometries too complicated, to give conclusive results.

In this work, we use the WiggleZ Dark Energy Survey (Drinkwa-
ter et al. 2010) to make a new measurement of the counts-in-spheres
and correlation dimension, to test for the transition to homogeneity.
WiggleZ provides a larger volume than previous surveys, making
it ideal for a homogeneity measurement, and it covers a higher
redshift range, allowing us to also investigate how homogeneity
changes with cosmic epoch. It is not volume limited, but we show
that this does not significantly affect our measurement. The transi-
tion to homogeneity can be used as a test of a particular cosmological
model, since we would expect it to differ for different cosmologies.
In this work, we test a ACDM model with best-fitting parame-
ters from the Wilkinson Microwave Anisotropy Probe (WMAP) data
(Komatsu et al. 2011), which we refer to as ACDM+WMAP. We
demonstrate the robustness of our measurement against systematic
effects of the survey geometry and selection function, by repeating
our analysis on both the GiggleZ N-body simulation and on a suite
of inhomogeneous, fractal distributions.

Before we make any meaningful test of homogeneity, however, it
is crucial to properly define what we mean by the so-called ‘scale’
of homogeneity. Since there is only a gradual approach to homo-
geneity, such a definition may be arbitrary. In the past, authors
have defined the ‘scale of homogeneity’ as the scale where the data
become consistent with homogeneity within lo (e.g. Hogg et al.
2005; Bagla, Yadav & Seshadri 2008; Yadav, Bagla & Khandai
2010). However, this method has several disadvantages. It depends
on the size of the error bars on the data, and hence on the survey
size. A larger survey should have smaller error bars, and so will
automatically measure a larger scale of homogeneity. It also de-
pends on the bin spacing, and is susceptible to noise between data
points. We therefore introduce a different, and more robust, method
for determining homogeneity: we fit a smooth, model-independent
polynomial curve to all the data points, and find where this intercepts
chosen values close to homogeneity.

Certain parts of our analysis require the assumption of a cos-
mological model and, implicitly, homogeneity (i.e. for converting

WiggleZ redshifts to distances, correcting for the selection func-
tion, calculating the uncertainties using lognormal realizations and
finding the best-fitting bias). In these cases, we use an input ACDM
cosmology with h = 0.71, ,, = 0.27, Q, = 0.73, Q, = 0.044 82,
og = 0.8 and ny; = 0.96. Here, the Hubble constant is Hy =
100 hkms™! Mpc_l, Q, is the mass density, 2, is the dark en-
ergy density, €2} is the baryon density, og is the rms mass variation
within spheres of 8 A~! Mpc radius and #; is the spectral index of
the primordial power spectrum. This is the same fiducial cosmology
used by Blake et al. (2011a), and we use this for consistency. We
discuss the implications of assuming a ACDM model on the results
of our homogeneity measurement in Section 7.

This paper is organized as follows. In Section 2, we describe
the WiggleZ survey and our data set. In Section 3, we describe
our methodology. We also explain our definition of the ‘scale of
homogeneity’ and present a new model-independent method for
measuring this from data. In Section 4, we describe our analytic
ACDM-+WMAP model. We present our results in Section 5. We
test the robustness of our method using fractal distributions and a
ACDM N-body simulation in Section 6. We discuss our results in
Section 7 and conclude in Section 8.

2 THE WiggleZ SURVEY

The WiggleZ Dark Energy Survey (Drinkwater et al. 2010) is a
large-scale spectroscopic galaxy redshift survey conducted at the
3.9-m Anglo-Australian Telescope, and was completed in 2011
January. It maps a cosmic volume of ~1 Gpc? up to redshift z = 1,
and has obtained 239 000 redshifts for ultraviolet-selected emission-
line galaxies with a median redshift of z;,.q = 0.6. Of these, 179 599
are in regions contiguous enough to be used for our analysis. It
covers ~1000deg? of equatorial sky in seven regions, shown in
Drinkwater et al. (2010, their fig.1).

The observing strategy and galaxy selection criteria of the Wig-
gleZ survey are described in Blake et al. (2009) and Drinkwater
et al. (2010). The selection function we use is described in Blake
et al. (2010). The targets were selected from Galaxy Evolution
Explorer (GALEX) satellite observations matched with ground-
based optical measurements, and magnitude and colour cuts were
applied to preferentially select blue, extremely luminous high-
redshift star-forming galaxies with bright emission lines.

The WiggleZ survey offers several advantages for a new study of
the scale of homogeneity. Its very large volume allows homogeneity
to be probed on scales that have not previously been possible, and
at a higher redshift; it probes a volume at z > 0.5 comparable to
the SDSS LRG catalogue at z < 0.5. This allows us to make the
first measurement of the change in the homogeneity scale over a
range of cosmic epochs. We divide our sample into four redshift
slices, 0.1 <7 <03,03 <z<05,05 <z<0.7and 0.7 <
z < 0.9. The sizes of the WiggleZ regions in each redshift slice are
listed in Table 1; they sample scales well above the expected scale
of homogeneity. The numbers of galaxies in each redshift slice are
listed in Table 2.

We also benefit from having seven regions distributed across
the equatorial sky, which reduce the effect of cosmic variance. In
addition, WiggleZ probes blue galaxies, whereas SDSS (which has
obtained the largest scale measurements of homogeneity to date)
used LRGs, and so it can also constrain any systematic effects
introduced by the choice of tracer galaxy population (Drinkwater
et al. 2010). Since blue galaxies are less biased, they are also more
representative of the underlying matter distribution.

© 2012 The Authors, MNRAS 425, 116-134
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Table 1. Comoving dimensions of WiggleZ regions in each redshift slice, in units of /™!
Mpc. The dimensions correspond to the line of sight, RA and Dec. directions, respectively.

05<z<0.7

0.7<z<09

Region 01<z<03 03<z<05

00-hr 551 x 146 x 222 505 x 232 x 353
01-hr 549 x 127 x 132 499 x 202 x 209
03-hr 549 x 133 x 129 499 x 211 x 206
09-hr 551 x 221 x 133 504 x 351 x 212
11-hr 553 x 280 x 145 509 x 445 x 231
15-hr 553 x 295 x 150 510 x 468 x 238
22-hr 550 x 142 x 143 500 x 225 x 228

459 x 309 x 471
450 x 269 x 279
450 x 281 x 274
458 x 467 x 283
466 x 592 x 308
468 x 623 x 317
452 x 300 x 303

417 x 378 x 575
405 x 329 x 341
405 x 343 x 335
416 x 571 x 346
426 x 724 x 376
429 x 762 x 387
408 x 367 x 371

Table 2. Number of WiggleZ galax-
ies in each redshift slice.

Redshift Number of galaxies
0.1 <z<03 25187
03<z<05 45698
05<z<07 70191
0.7<z<09 38523

There are, however, several aspects of the survey that could po-
tentially be detrimental to a homogeneity measurement. WiggleZ
has a complex window function, with a complicated edge geometry
including holes in the angular coverage, and the spectroscopic com-
pleteness varies across the sky. In addition, the population properties
of the galaxies are known to vary with redshift, due to the effects of
Malmgquist bias (since WiggleZ is a flux-limited survey), downsiz-
ing (the observed fact that the size of the most actively star-forming
galaxies decreases with time; Cowie et al. 1996; Glazebrook et al.
2004) and the colour and magnitude selection cuts (Blake et al.
2010). This means that WiggleZ preferentially selects larger mass,
higher luminosity galaxies at higher redshift. A consequence of this
is that it is not possible to define volume-limited subsamples of Wig-
gleZ. However, we can correct for these effects by using random
catalogues (Section 3.1), which account for the survey selection
function (Blake et al. 2010). We also divide the survey into four
redshift slices, reducing the amount of galaxy population evolution
in any region. In addition, we show that our results are not biased by
the assumption of homogeneity in the selection function corrections,
using an N-body simulation and a suite of inhomogeneous fractal
distributions, described in Section 6. We are therefore confident that
our result is not distorted by any features of the survey.

We convert the redshifts of the WiggleZ galaxies to comoving
distances d., using

c © o d7
dc = 5 B 1
(2) H /0 EQ) (D
where
H
E(z) = I-Z) = [Quo(l +2)° + Qa0l"% 2

and we use the fiducial ACDM parameter values listed in Section 1.
To do this, we assume the FRW metric and ACDM. This is necessary
for any homogeneity measurement, since we must always assume a
metric in order to interpret redshifts. Therefore, in the strictest sense
this can only be used as a consistency test of ACDM. However, if
we find the trend towards homogeneity matches the trend predicted
by ACDM, then this is a strong consistency check for the model
and one that an inhomogeneous distribution would find difficult to
mimic. We discuss this further in Section 7.
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3 METHODOLOGY

Here we describe our methodology for measuring the transition to
homogeneity. We first calculate the mean counts-in-spheres N( < r),
then we find the fractal correlation dimension D;(r), from the slope
of N(r). Although they are closely related, it is interesting to con-
sider both, since the counts-in-spheres is the simplest measurement
of homogeneity, whilst the correlation dimension provides direct
information about the fractal properties of the distribution. We also
describe our method of determining uncertainties, and our method
of defining the ‘homogeneity scale’ Ry.

3.1 Scaled counts-in-spheres N (<r)

The simplest test of homogeneity of a set of points is to find the av-
erage number N(< r) of neighbouring points from any given point,
up to a maximum distance r; if the distribution is homogeneous,
then (for large enough r)

N(<r) x rP, 3)

where D is the ambient dimension (the number of dimensions of
the space; for a homogeneous volume, D = 3).

We find N(<r) for spheres centred on each of the WiggleZ galax-
ies, and correct for incompleteness by dividing by the number ex-
pected for a homogeneous distribution with the same level of com-
pleteness. (We show that this does not bias our final results.) This
is done by finding the mean N(< r) about the coordinate position
of the WiggleZ galaxy from 100 random catalogues, each with the
same number density, window function and redshift distribution of
the WiggleZ survey. The method of generating the random cata-
logues is described in Blake et al. (2010). We then take the average
over all the galaxies, to obtain the mean, scaled counts-in-spheres
measurement N (<r):

| &
./\/'(<r):52

1
i=1 R

Ni(<r)

Jon PN (<)

“

where G is the number of WiggleZ galaxies used as sphere centres,
R is the number of random catalogues, N(<r) is the counts for Wig-
gleZ galaxies, Nr(< r) is the counts for random galaxies (centred
on the position of the ith WiggleZ galaxy) and p; = nw/ngnqj is the
ratio of the total number of WiggleZ galaxies (nw) to the number of
random galaxies in the jth random catalogue (72;4,4 ). In our analy-
sis, we have G = ny, but this would not be the case if, for example,
we excluded spheres near the survey edges.

The random catalogue correction has the effect of reducing the
scaling by the number of dimensions (i.e. D = 3), so that for a
homogeneous distribution N'(<r) scales as

N(<r)«r??=1. 5)
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Figure 1. An illustration of the scales for which survey edge effects become
important for the homogeneity measurement. Top panel: the mean volume
V(r) in a thin shell of mean radius r surrounding a WiggleZ galaxy within
the selection function (black curve). We show this for the 15-hr 0.5 < z <
0.7 region. The true volume of the shells is shown as a blue dashed line.
The black curve deviates from the blue at large scales, where an increasing
proportion of the shells extends outside the survey. Bottom panel: the ratio
of the mean volume to the true volume, as a function of r. The grey dashed
line indicates a ratio of 1.

In each WiggleZ region, we make N(<r) measurements in
spheres with 12—15 logarithmically spaced radial bins (depending
on the size of the region). We determine the large-scale cut-off in
each region by calculating the mean volume in the selection func-
tion, V (r), in a thin shell of mean radius r enclosing a central galaxy.
We illustrate this for the 15-hr 0.5 < z < 0.7 region in Fig. 1, and
compare it with the ‘true’ volume of the shells. Below ~2 4~! Mpc,
there is noise due to low resolution, but above this the two curves
are very close. On large scales, however, an increasing proportion of
shells surrounding galaxies goes off the edge of the survey, and their
volume within the survey decreases. On such scales, corrections for
edge effects will become important. We take the large-scale cut-off
of our homogeneity measurement at the radius of the maximum-
volume shell. For the region in Fig. 1, this corresponds to shells that
are ~20 per cent complete. We show later that edge effects up to
this scale do not impact our homogeneity measurement.

Our correction method using random catalogues maximizes the
use of the data, and accounts for incompleteness and the fact that
WiggleZ is not volume limited. However, it can potentially bias our
result towards detecting homogeneity, since it assumes homogeneity
on the largest scales of the survey. It is equivalent to weighting
each measurement by the volume of the sphere included within the
survey, multiplied by an arbitrary mean density. Therefore, while
the counts-in-spheres measurement should have the advantage of
not assuming a mean density (Hogg et al. 2005), our correction
method means that we do. Therefore, N'(<r) should tend to 1 on
the largest scales of the survey, regardless of whether homogeneity
has been reached. However, for a distribution with homogeneity
size smaller than the survey, N (<r) should reach 1, and remain at
1, for a range of scales smaller than the survey scale. We check the
robustness of our method against effects of the selection function
and correction method in Section 6 and show that our analysis is

robust against this potential source of systematic error out to scales
far greater than the homogeneity scale we measure.

There are other correction methods used in the literature. There
is the so-called ‘exclusion’ or ‘deflation’ method (e.g. Coleman &
Pietronero 1992; Pan & Coles 2000, 2002; Sylos Labini et al. 2009),
which only considers central points that are surrounded by complete
spheres within the survey. This therefore excludes as central points
any galaxies within a certain distance from the survey edges. How-
ever, this does not make the best use of the data, since it excludes
data and so reduces the volume of the sample.

There is also the so-called ‘angular correction’” model, which has
been shown to be more optimal, by using all the available data with-
out introducing a bias due to edge corrections (Pan & Coles 2002).
This corrects measurements in a sphere by the solid angle subtended
by regions in the sphere that are outside the survey boundary. How-
ever, as they point out, this method is difficult to apply to surveys
with a complicated geometry, especially if they contain holes, as
WiggleZ does. Finally, another correction that minimizes bias at the
survey edges, but wastes little data, is the ‘Ripley’ estimator (Ripley
1977; Martinez et al. 1998), which corrects the measurement in a
sphere by the area of the sphere contained within the survey. Both
the angular correction and the Ripley estimator assume isotropy of
the samples. Due to the geometry of the WiggleZ survey, we choose
to use a random catalogue correction, but make robustness tests to
quantify any bias it may introduce to the results.

To demonstrate the robustness of our measurement against the
method of correcting for the selection function, we compare our
method to an analysis using only complete spheres, with and without
correcting for incompleteness, in Section 6.3, and show we obtain
consistent results.

3.2 Correlation dimension D, (r)

Fractal dimensions can be used to describe the clustering of a
point distribution. There exists a general family of dimensions D,,
the Minkowski—-Bouligand dimensions, which describe the scaling
of counts-in-spheres centred on points (see, e.g., Borgani 1995;
Martinez & Saar 2002, for a review). To completely characterize
the clustering of our galaxy distribution, we would need to consider
all the moments g of the distribution (corresponding to combina-
tions of n-point correlation functions). However, to identify the scale
of homogeneity we consider only D, the ‘correlation dimension’,
which quantifies the scaling behaviour of the two-point correlation
function &(r).

If we take a galaxy and count the number of other galaxies,
N(<r), within a distance r, then this quantity scales as

N(<r) o« rP2, 6)

where D, is the fractal dimension of the distribution.
From this, the correlation dimension is defined as

din N(<r)
Dy(r)y= ———. @)
dInr
Since we must correct each WiggleZ N(<r) measurement for
completeness, obtaining the scaled quantity AV/(<r) o< r?273, we
must calculate D,(r) via
dInN(<r
Dy(r) = # + 3. ®)
dinr

For a homogeneous distribution, D, = 3. If D, < 3 then the
distribution has a scale invariant, fractal (and so inhomogeneous)
clustering pattern. If D, > 3 the distribution is said to be ‘superho-
mogeneous’ and corresponds to a lattice-like distribution (Gabrielli,
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Joyce & Sylos Labini 2002). A power law in 1 + &(r) ~ r7 has
D, =3—yfor& > 1.

Some previous works have found D, (r) by simply fitting a straight
line to a log-log plot of N(<r). This method can give a false
indication of a fractal (Martinez et al. 1998); calculating D;(r)
explicitly gives a more reliable measurement.

We note that our estimator for N'(<r) (equation 4) is essentially
equivalent to 1 + &(r), where (Hamilton 1992)

_ 3 [
Er)= > / (o) d. )
r=Jo

[This can be seen more clearly by rearrangement of the theoretical
expression for N'(<r) given by equation 19.] Many measurements
of &,(r) have been made with different galaxy surveys (e.g. Hawkins
et al. 2003; Zehavi et al. 2005; Beutler et al. 2011; Blake et al.
2011b). On small scales, the correlation function is well described
by a power law:

ro\v
§(r) = (—) ) (10)
r
where ry ~ 5h~! Mpc is the so-called clustering length, and y ~
1.8, depending on the galaxy population. On scales >20 k="' Mpc,
however, the correlation function is observed to turn over, consistent
with large-scale homogeneity.

However, the correlation function cannot be used to test large-
scale homogeneity, since the way it is determined from surveys
depends on the mean galaxy density. Determinations of £(r) com-
monly use the Landy—Szalay (Landy & Szalay 1993) or Hamilton
estimators (Hamilton 1993), which compare the galaxy clustering
to that of random catalogues of the same mean density as the survey.

Our N'(<r) estimator also compares the data to random cata-
logues, since we must correct for the selection function. Therefore,
N (<r), like &(r), does assume a mean density on the scale of the
survey. However, our estimator is slightly different, as we correct
each object separately rather than an average pair count.

The correlation dimension D,(r), on the other hand, measures
the scaling of N'(<r), which is not affected by the assumption
of the mean density. [This only affects the amplitude of N'(<r).]
Deviations from a volume-limited sample, which require random
catalogue corrections, only cause second-order changes to D,(r),
whilst they would be leading order in the raw correlation function.
Therefore, D,(r) is much more robust to both the assumed mean
density and details of the selection function, making it the most
reliable measure of homogeneity.

3.3 Lognormal realizations and covariance matrix

Lognormal realizations (Coles & Jones 1991) are an important tool
for determining uncertainties in galaxy surveys. A lognormal ran-
dom field is a type of non-Gaussian random field, which can be used
to model the statistical properties of the galaxy distribution and sim-
ulate data sets with an input power spectrum. We have used 100 such
realizations, generated using an input ACDM power spectrum with
the fiducial parameters listed in Section 1. These are sampled with
the survey selection function, to create 100 mock catalogues for
each of the WiggleZ regions. We use these to calculate the full co-
variance and errors of our measurement. Jackknife resampling does
not permit enough independent regions within the survey volume
to give a reliable estimate of the uncertainties.

We obtain N'(<r) and D,(r) for each of the lognormal realizations
in the same way as for the WiggleZ data. The covariance matrix
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Figure 2. The correlation matrix Cj; / \/ C;;Cj; for the N(r) measurement,
obtained from lognormal realizations, for the 0.5 < z < 0.7 redshift slice.

between radial bins i and j is given by
1< — -
Cyj = mlzzl[xl(r,-) — Xl () = x(r)l, an

where x(r) is N(<r) or D,(r), the sum is over lognormal real-
izations [, n is the total number of lognormal realizations and
x(r) = %Z;’:I x;(r). The diagonal values j = k give the vari-
ance, o°.

The correlation coefficient between bins i and j is given by
ri i = L

The correlation matrices for N'(<r) and D (r) are shown in Figs 2
and 3, respectively, for the combined regions (see the next section)
in the 0.5 < z < 0.7 redshift slice.

It is notable that the A'(<r) measurement is more correlated than
D (r). This is because N (<r) is effectively an integral of D,(r),
80 its covariance is effectively a cumulative sum of that of D;(r).
It can also be explained by the fact that D,(r) is the logarithmic
slope of N'(<r), so it does not depend on the correlations between

12)

r, [h"" Mpc]

10
r,[h’ Mpc]102

Figure 3. The correlation matrix C;;/ \/ C;; Cj; for the Dy(r) measurement,
obtained from lognormal realizations, for the 0.5 < z < 0.7 redshift slice.
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widely separated N (<r) bins but rather the variations between
neighbouring bins.

We note that the uncertainties calculated using lognormal realiza-
tions assume ACDM, and represent the variance we would expect to
measure in a ACDM universe. It would not be possible to calculate
uncertainties for a fractal universe, since a fractal has no defined
cosmic variance as it has no defined mean density. However, cal-
culating uncertainties this way gives a valid consistency check of
ACDM.

3.4 Combining WiggleZ regions

In each of the four redshift slices, we combine the measurements
from each of the seven WiggleZ regions using inverse-variance
weighting. The combined measurements Xcomp are given by

> Wa()x, ()

>, wali)
where n are the seven WiggleZ regions, x,,(i) is the measurement in
the ith radial bin in the nth region and w,(r) = 1/C,(i, i) is a weight
function. C, (i, j) is the covariance matrix of the nth region, and the
combined covariance matrix is calculated by
>0 s w,(Dwa(f)

Zn w”(i) Zn wn(j) '

We show Ceomp (i, j) for the N'(<r) and D,(r) measurements in
the 0.5 < z < 0.7 redshift slice, in terms of the correlation matrix

Cij/+/CiiCjj, in Figs 2 and 3.

(13)

Xeomb(i) =

Ceomb (i, ]) = (14)

3.5 Likelihood (x?) and parameter fitting

The x? of our model fit to the data is given by

=30 Il = xonrIC; ranlr) — X)L (15)

i=1 j=1

where x(r) is N (<r) or Dy(7), nyiys is the number of radial bins, x,
is the theoretical model and x,s is the measured value. Cl-;l is the
inverse of the covariance matrix.

3.6 A new method of defining the ‘homogeneity scale’ Ry

As previously mentioned, the definition of a ‘homogeneity scale’ is
somewhat arbitrary since we expect the Universe to have a gradual
approach to homogeneity. Recently, Bagla et al. (2008) and Yadav
et al. (2010) proposed that the homogeneity scale be defined where
the measured fractal dimension D, becomes consistent with the am-
bient dimension within the 1o statistical uncertainty, oa D, They
derived an approximation for D,(r) and oA p, " in the limit of weak
clustering, for a given correlation function, and showed that both
scale the same way, and so the homogeneity scale stays constant,
with bias and epoch. This definition is therefore beneficial as it is not
arbitrary, and is robust to the tracer galaxy population. However, in
deriving o p, they considered only shot noise and cosmic variance
from variance in the correlation function, while ignoring contribu-
tions from the survey geometry and selection function. Any real
survey will have these contributions to the statistical uncertainty,
which cannot be separated from the variance due to the correla-
tion function alone. The value derived from this definition in a real
survey is therefore difficult to interpret in a meaningful way, i.e.
one that allows comparison with theory or with different surveys of
differing volume and selection function.

o
o

Ry

- WiggleZ doto -
- — Polynomial fit

N
H
©o

Correlation dimension D,(r)

40 60 80 100 120
r [h™' Mpc]

Figure 4. Illustration of our method of defining the homogeneity scale, Ry,
shown here for the D,(r) measurement. We first fit a model-independent
polynomial (red curve) to the data (black data points). We then find where
this intercepts a chosen value close to homogeneity, e.g. 1 per cent from
homogeneity, D, = 2.97 (dotted grey line). This gives us Ry. We find the
uncertainty in Ry from the rms variance of 100 lognormal realizations (pink
curves).

We therefore introduce a different method for determining a
‘homogeneity scale’ Ry, which is easier to compare with theory and
between surveys. Our method is to fit a smooth, model-independent
polynomial to the data, and find the scale at which this intercepts
a chosen value, or ‘threshold’, close to homogeneity. This scale is
then defined as the homogeneity scale Ry. For example, Ry could
be the value of r at which the polynomial intercepts a line 1 per
cent from N'(<r) = 1 or D,(r) = 3 (see Fig. 4 for an illustration).
The uncertainty is found using the 100 lognormal realizations. The
homogeneity scale measured this way does not depend directly on
the survey errors (although the uncertainties on Ry do), and is less
susceptible to noise in the data, making this a preferable method
that allows comparisons between different surveys. It also allows
easy comparison between the data and a given model, e.g. ACDM,
and we can check that the data converge to AV = 1 or D, = 3 as
expected for a homogeneous distribution, by choosing a range of
thresholds approaching homogeneity (see Fig. 9).

We can also take this further and construct a likelihood distribu-
tion for the homogeneity scale, as described in Section 5.3.

Although our choice of D, threshold is arbitrary, by choosing the
same threshold for different surveys we obtain an Ry value that can
be meaningfully compared, and that can be easily compared to a
theoretical model. Our choice of threshold may be limited by the
amount of noise in the data, however. For instance, we can measure
anintercept 1 per cent away from homogeneity for the WiggleZ data,
but cannot measure 0.1 per cent in two of the redshift slices, due
to noise (the data do not come this close to homogeneity, although
they are consistent with it within the uncertainties; see Fig. 9). None
the less, we can easily choose a threshold that is possible given our
data, and use this to compare with a model. The baryon acoustic
oscillation (BAO) feature can also potentially affect the appropriate
choice of intercept value as it causes a small distortion in D,(r) —
we discuss this in Section 7.

For the main results in this paper, we have chosen a threshold of
1 per cent away from homogeneity, since this is about the closest
threshold to homogeneity we can measure, considering the noisiness
of the data.
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4 ACDM MODEL PREDICTION OF N(<R)
AND Dy(R)

In this section, we derive theoretical ACDM predictions for the
counts-in-spheres and correlation dimension. This allows us to com-
pare our measurements of the transition to homogeneity to the pre-
dictions of a ACDM model that fits WMAP data.

4.1 N(<r) and D,(r)

For a particular galaxy population, we can calculate the mean
counts-in-spheres N(<r) from the two-point matter correlation
function predicted by ACDM. The two-point correlation function
&(r) is defined as the excess probability above random of finding two
objects in volumes dV; and dV,, separated by distance r (Peebles
1980):

P(r) = p’[1 +£(N]dV1dVs, 16)

where p is the mean number density.
The mean number of galaxies surrounding a random galaxy up
to a distance r is found by integrating the correlation function:

N(<r), = p / [1 4 b4 dr, 17
0

where b is the galaxy bias, relating the clustering of a particular
galaxy population to the underlying dark matter distribution. Note
that ACDM assumes large-scale homogeneity, and indeed we must
assume large-scale homogeneity in order for a mean density p to
be defined.

We obtain our model correlation function by transforming a
ACDM matter power spectrum Py (k) generated using cams (Lewis,
Challinor & Lasenby 2000). Since we make our measurements in
redshift space, we first convert Pss(k) to the redshift-space galaxy
power spectrum Py (k) (described in the next section), then convert
this to the redshift-space galaxy correlation function &,(s), where s
denotes distance in redshift space. Since we use the angle-averaged
power spectrum (assuming the power spectrum is isotropic), we do
not need to integrate the angular part of the k-space integral, and so
use a spherical Hankel transform rather than a Fourier transform to
obtain &,(s):

1 __sinks
E,(s) = ﬁ/ng(k) o K dk. (18)

To compare with our WiggleZ measurement (equation 4), where
we correct for incompleteness, we divide our counts-in-spheres
prediction by the number that would be expected for a random
distribution, i.e. [)‘3—’7'[;’3:

N(<r) = 47%/ [1 + & (s)]47ts* ds. (19)
0

We calculate the model D,(r) by simply applying equation (7) to
our model N'(<r).

4.2 Redshift-space distortions and non-linear
velocity damping

Here we describe how we implement redshift-space distortions in
our analytical model. In practice, we measure the positions of galax-
ies in redshift space, which are affected by redshift-space distor-
tions. These are due to the peculiar velocities of galaxies along the
line of sight, which add to the measured redshifts and perturb the
inferred galaxy positions. This anisotropic effect creates anisotropy
in the observed redshift-space galaxy power spectrum FPg(k, (),
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and can be modelled by multiplying (convolving in configuration
space) the real-space matter power spectrum by an angle-dependent
function F(k, w):

Py(k, p) = b F(k, j1) Pss (k). (20)

There are two forms of redshift-space distortion of relevance to
our measurement, which we find are necessary for a good fit to the
data.

(i) Onlarge, linear scales (=20 h~' Mpc), the bulk infall of galax-
ies towards overdensities creates an enhancement in the observed
power spectrum along the line of sight. This can be modelled by the
linear Kaiser formula (Kaiser 1987):

fw

2
Pylk, p) = b? (1 + T) Pss.L(k)

= b*(1 + Bu’)* Py L(k),

where Pjs;s1.(k) is the linear matter power spectrum, f is the growth
rate of structure and B = f/b is the redshift-space distortion param-
eter.

Note that this formula assumes a perturbed FRW universe with
small real-space density perturbations |§(r)| < 1.

(ii) On quasi-linear scales (10 < s < 20A~! Mpc), the pecu-
liar velocities resulting from the scale-dependent growth of struc-
ture distort the shape of the power spectrum, via a scale-dependent
damping effect. A common way of modelling this is the ‘streaming
model’ (Peebles 1980; Fisher 1995; Hatton & Cole 1998), which
combines the linear theory Kaiser formula with a velocity streaming
term. We choose to use a Lorentzian term, F' = [1 + (ko w1,
for an exponential velocity probability distribution function (PDF),
since Blake et al. (2011a) found this to be a good fit to the WiggleZ
power spectrum for k < 0.1 4~! Mpc. This gives us the so-called
‘dispersion model’ (Peacock & Dodds 1994) for the full redshift-
space power spectrum:

oy — 2 L+ BIEP
Pg(kv /L)_b 1+(k0pﬂ)2

@n

Pss (k). (22)

Here, o, is the pairwise velocity dispersion along the line of sight.
Both o, and B are parameters that must be fitted to the data. We
use the values obtained by Blake et al. (2011a) in each redshift slice
from fits to the WiggleZ 2D power spectrum — these are listed in
Table 3.

We note that the streaming model is motivated by virialized mo-
tions of particles within haloes, on much smaller scales — the so-
called ‘Finger of God’ effect at <2 h~! Mpc. However, it is heuristic
in nature and can also describe physical scales of tens of A~! Mpc.
Blake et al. (2011a) apply it this way by fitting for o, on these

Table 3. Values of the redshift-space
distortion parameter $ and the pairwise
velocity dispersion o, used in our mod-
elling of non-linear redshift-space dis-
tortion effects. These values were ob-
tained by Blake et al. (2011a) from fits
to the WiggleZ 2D power spectrum.

Redshift B op (hkms™")
0.1<z<03 0.69 346
03<z<05 073 275
05<z<07 0.60 275
07<z<09 051 86
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scales, rather than on Finger-of-God scales. We find that including
it gives a significant improvement of our model fit to data.

To obtain the angle-averaged redshift-space galaxy power spec-
trum Pg(k), we need to convert the full F(k, i) to F(k), which we
do by integrating over j:

1 1 2y2

F(k) = / L’BML du. (23)
n=0 [l + (ko'vﬂ) ]

The angle-averaged redshift-space galaxy power spectrum is then

P}(k) = b*F (k) Pys (k). (24)

Equation (22) normally assumes a linear matter power spectrum;
however, we choose to use a non-linear Pg;(k), calculated by cams
using the HALOFIT code (Smith et al. 2003), since Blake et al. (2011a)
found that this gave a better fit to the data.

4.3 Correcting the WiggleZ data for galaxy bias

The amplitude of the galaxy correlation function is affected by
galaxy bias and redshift-space distortions, and the shape is affected
by non-linear damping. Therefore, these also affect the amplitude
and shape of NV'(<r), as well as the measured scale of homogeneity.
It is possible to correct the data for bias, and hence to determine
the homogeneity scale for the underlying matter distribution, by
assuming a particular model, i.e. our ACDM+WMAP model, fitting
for bias by minimizing the 2 value, and correcting the data for this.

In our analysis, we only consider linear galaxy bias. This relates
the galaxy correlation function £,(r) to the matter correlation func-
tion &,(r) through £,(r) = b*E ,(r). Since we are only interested
in large scales, we do not consider scale-dependent bias that may
occur on small scales.

We fix the redshift-space distortion parameter 8 and velocity
dispersion o, to the values listed in Table 3. We then obtain our
corrected measurements Npigs ree (<7°):

M)iasfrec(<r) = % + 17 (25)
and we calculate the bias-corrected correlation dimension
D piasree () from this, using equation (7).

Since we assume a ACDM model to fit for bias, we cannot make
a model-independent measurement of transition to homogeneity of
the underlying matter distribution. However, it is still interesting
to look at the variation of the homogeneity scale of the matter
distribution with redshift, assuming ACDM+WMAP.

We note that our measurement of the homogeneity scale of the
WiggleZ galaxies is independent of the ACDM modelling shown in
this section. This modelling is only done so that we can show that
the measurement is consistent with that expected from ACDM.

5 RESULTS

5.1 N(<r) and Dy(r)

The N (<r) measurements in each of the four redshift slices are
shown in Fig. 5. The data are compared with a ACDM+WMAP
model (described in Section 4). For each successive redshift slice,
the reduced x? values are 0.57, 0.91, 0.69 and 1.1. The first two
redshift slices have 14 data bins from 12.5 to 251 h~! Mpc, while
the last two have 15 data bins from 12.5 to 316 #~! Mpc. The data
are consistent with a monotonically decreasing function, so we can
fit a polynomial and find where this intercepts a chosen threshold,
as per our definition of homogeneity.

The intercepts of the polynomial fit with A" = 1.01 (1 per cent
away from homogeneity), which we define as the homogeneity scale
Ry, are shown as red error bars. The errors were determined from
the 100 lognormal realizations, and correspond to the square roots
of the diagonal elements of their covariance matrix. The Ry values
and their errors are shown in Fig. 5 and listed in Table 4, along with
the values for the ACDM model, which are in good agreement.

The D,(r) measurements in each of the redshift slices are shown
in Fig. 6, along with a ACDM+WMAP model with best-fitting bias.
In each redshift slice, the data range and degrees of freedom are the
same as for the AV/(<r) measurement. The reduced x> values in
each redshift slice are 0.83, 0.90, 0.74 and 0.98. In each case, a
polynomial is fitted to the data. The homogeneity scales measured
where these intercept 1 per cent away from homogeneity, D, =2.97,
are listed in Table 4 and are also in excellent agreement with the
ACDM values.

5.2 Effect of bias and o3(z) on Ry

The homogeneity scale of the model galaxy distribution, measured
at 1 per cent from homogeneity, will depend on the amplitude and
shape of the correlation function, and so on galaxy bias b and o g(z).
We would also expect it to depend on redshift, since o5(z) increases
over time. These two parameters are in fact completely degenerate
in the M(<r) and D,(r) measurements.

Fig. 7 shows how our ACDM N (<r) and D,(r) models vary
with bias, at z = 0.2, for fixed og(z = 0) = 0.8. Larger bias means
a larger amplitude of clustering, so that both curves are steeper
on small scales. This means that the models reach homogeneity at
larger radii for higher bias. This can be understood qualitatively,
since highly biased galaxies are more clustered together than less
biased galaxies, so we must go to larger scales before we reach a
homogeneous distribution.

Fig. 8 shows how the homogeneity scale Ry of the galaxy distri-
bution varies with bias, for different intercept values approaching
homogeneity, for the A'(<r) and D,(r) models at z = 0.2 with fixed
o3(z = 0) = 0.8. For a particular intercept value, larger bias again
gives a larger homogeneity scale. Since A (<r) and D,(r) approach
homogeneity asymptotically, the intercept jumps to higher values
when we consider an intercept value closer to homogeneity. This
image also shows the mapping between A (<r) and D,(r) homo-
geneity values for intercepts at 1, 0.1 and 0.001 per cent away from
homogeneity. They are not identical since they are slightly different
methods, but give similar results. This plot illustrates that there are
many potential ways to define homogeneity, and so it is important to
make consistent measurements between surveys in order for them
to be comparable with each other and with theory.

Our bias-corrected N (< r) and D,(r) measurements are listed in
Table 4. The errors on the bias-corrected data were determined by
applying a bias correction to each of the 100 lognormal realizations
individually, and recalculating the covariance matrix. Since the bias
correction aims to set the bias of all the realizations to b = 1, it lowers
the overall variance, and so the error bars are slightly smaller than for
the pure data. These measurements give our measured homogeneity
scale for the matter distribution, assuming ACDM. We find that this
scale increases with redshift, as expected in ACDM. However, since
we are assuming ACDM, which has og(z) increasing with time, this
is not a model-independent result.

As already mentioned, the effect of bias on the homogeneity
scale of galaxies is degenerate with the amplitude of the correlation
function, og(z), since the correlation function at redshift z depends
on a combination of these, &(r, z) o« b*og(z)>. So far we have
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Figure 5. Scaled counts-in-spheres N'(<r) for the combined WiggleZ data in each of the four redshift slices (black error bars). A ACDM model with
best-fitting bias 57 is shown in blue. A fifth-degree polynomial fit to the data is shown in red. The red error bar and label show the homogeneity scale Ry
for the galaxy distribution, measured by the intercept of the polynomial fit with 1.01 (1 per cent away from homogeneity), with the error given by lognormal
realizations. This scale is consistent with the ACDM intercept with 1.01, labelled in blue.

Table 4. Measured values of the homogeneity scale Ry (where data intercept 1 per cent of the homogeneity value). The Ry values shown are all for the galaxy
distribution, except the values for the bias-corrected data, which are for the underlying matter distribution, i.e. 5> = 1. The bias-corrected values directly
assume a ACDM+WMAP model.

WiggleZ data ACDM Measured  Bias-corrected ACDM, Likelihood analysis Bias-corrected
(h~" Mpc) (h""Mpc)  bias, >  data (h"'Mpc) b> =1 (h~' Mpc) (h~" Mpc) likelihood analysis (A~! Mpc)

N(<r)
0.1<z<03 72 £26 80 0.68 83 +£35 93 - -
03<z<05 90 £8 83 0.87 99 + 11 87 - -
05<z<0.7 78 £8 85 1.23 73+6 79 - -
0.7<z<09 816 82 1.43 70+£4 72 - -

D (r)
0.1<z<03 70+7 76 0.70 84 £ 11 88 71+£8 89 £+ 14
03<z<05 70+£5 78 0.87 74+6 82 70+£5 5+£5
05<z<0.7 81 +4 81 1.25 74 +3 73 81£5 76 £ 4
0.7<z<09 74+4 78 1.46 64 £2 66 5+4 65 +4
assumed a fixed value of og(z = 0). However, we can also make redshift, so the data points from left to right go from low to high
predictions independent of og, by finding how Ry changes as a redshift. The WiggleZ results are in very good agreement with the
function of the combination b%>cg(z)?. This is shown in Fig. 9. We ACDM+WMAP predictions. We show, for comparison, the values
also show the WiggleZ results, which we have plotted for the best- obtained from defining the homogeneity scale as where the data
fitting b’0'3(z)* value in each redshift slice. This increases with come within 1o of homogeneity. These values have much greater
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Figure 6. Same as for Fig. 5 but for the correlation dimension D, (r). The D,(r) measurements for the combined WiggleZ data in each of the four redshift
slices are shown as black error bars. A ACDM model with best-fitting bias b is shown in blue. A fifth-degree polynomial fit to the data is shown in red. The
red error bar and label show the homogeneity scale Ry measured by the intercept of the polynomial fit with 2.97 (1 per cent away from homogeneity), with the
error given by lognormal realizations. This scale is consistent with the ACDM intercept with 2.97, labelled in blue.
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Figure 7. The effect of bias on a ACDM N (<r) model (left) and D,(r) model (right) at z = 0.2. Increasing the bias increases the value of A/(<r) on small
scales, and decreases the value of D, (r) on small scales, and produces a larger homogeneity scale, as seen by the intercepts of the curves with 1 per cent of
homogeneity (N =1.01 and D, = 2.97, red dotted lines).
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Figure 8. Ry for ACDM N (r) (green) and D;(r) (purple) models at z = 0.2
with differing bias b2. Each curve corresponds to Ry evaluated at a different
threshold — 1, 0.1 or 0.01 per cent away from homogeneity (from bottom to
top, labelled).

stochasticity than those from our method of fitting a smooth curve to
many data points, and do not give informative results in this plane.

We see that the model Ry—b>0g(z)> curves are monotonically
increasing. Since we expect og(z) in ACDM to grow over time
due to growth of structure, we would therefore also expect the
homogeneity scale to increase over time, for galaxies with fixed
bias.

For the WiggleZ data, however, the measured homogeneity scale
does not appear to decrease with redshift. This is explained by the
fact that the WiggleZ galaxies have increasing bias with redshift,
assuming a ACDM growth rate. As explained previously, this is un-
derstood to be due to the effects of Malmquist bias and downsizing
on the selection of the WiggleZ galaxy population, and the colour
and magnitude cuts. This counteracts the effect of decreasing o

Ry for scaled N(<r)

100

Ry [h™" Mpc]
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with redshift. As can be seen in Fig. 9, within the b>03(z)* range of
the data we would not expect a significant change in Ry, measured
at 1 per cent from homogeneity, with redshift.

5.3 Likelihood analysis for homogeneity scale

Rather than trying to measure the scale of homogeneity directly, it
can be informative to consider the likelihood that the Universe has
reached homogeneity by a certain scale. We can construct a PDF
for the homogeneity scale, by combining the likelihood distribution
of the data with that of the definition of the homogeneity scale.
This gives the probability that homogeneity is reached at a certain
scale r.

We could apply a likelihood analysis to either our N'(<r) or D, (r)
measurements. However, it would arguably be invalid for highly
correlated data, such as the /(<r) measurement, since the different
contributions to the probability distribution would be correlated,
and we do not correct for this. The D,(r) measurement is much less
correlated (see Figs 2 and 3). Also, as we have explained, D,(r) is
the most robust measurement of homogeneity, so we have chosen
this for our likelihood analysis.

The likelihood distribution on the data is simply given by the
mean and variance of the lognormal realizations in each bin. These
give the expected variance of a ACDM distribution sampled with
the WiggleZ selection function and hence take into account both
cosmic variance and shot noise. Here we assume they are Gaus-
sian distributed by virtue of the central limit theorem. However,
we also consider the true distributions provided by the lognormal
realizations — this gives similar results but with larger errors (see
Appendix A).

At each r, the data therefore provide a probability distribution
pplD2(r)], which we model as Gaussians, as

1
PolDa(r)] = —=e P, (26)
[on

Ry for Dy(r)
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Figure 9. Homogeneity scale Ry as a function of b20g(z)?, as predicted by the ACDM model, for different thresholds approaching homogeneity (10, 1 and
0.1 per cent from homogeneity, coloured curves from bottom to top), for N'(<r) (left) and D,(r) (right). The corresponding WiggleZ results are shown as error
bars of corresponding colour (the errors are found using lognormal realizations). The b?c'3(z)* values of the data increase with redshift slice (so the data points
from left to right are from low to high redshift). Not all redshift slices have measurements at 0.1 per cent (blue) since the data do not reach this value in those
slices. The definition of homogeneity used by previous authors is where the data come within 1o of homogeneity — we show these scales as black diamonds. It
is clear that this definition has much greater stochasticity than our definition, which fits a smooth curve to many data points. Indeed, this approach gives quite
uninformative results in this plane and cannot be compared to the model prediction.
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Figure 10. The probability distributions pp[D2(r)] for each of the r bins
in the 0.5 < z < 0.7 redshift slice. Blue-to-red gradient indicates small to
large radius, from 12.5 to 316 4~! Mpc. The area of each distribution above
D, (r) = 2.97 (dotted line) gives the probability that homogeneity has been
reached within 1 per cent by that value of r.

where u is the WiggleZ value of D, at radius r and o is the rms
variance given by the lognormal realizations. See Fig. 10 for an
illustration.

We also expect there to be a likelihood distribution on the D,(r)
value we would measure for a perfectly homogeneous distribution,
due to cosmic variance and shot noise caused by our selection
function. We can represent this by a likelihood distribution on the
homogeneity scale — this would not be a simple delta function at
D;(r) = 3, but would have some spread. This distribution should
be one-sided — i.e. we do not expect to measure D,(r) > 3, only
D,(r) < 3, if we have a distribution that approaches homogeneity.?
We might expect it to be represented by the variance in the ran-
dom catalogues, which are essentially homogeneous distributions
sampled with the WiggleZ selection function. However, the same
sources of noise are also present in the lognormal realizations, so
we would potentially double count errors if we also used lognormal
realizations to determine the likelihood distribution of the data. This
means we cannot easily determine the true variance in the value of
D,(r) we would expect to measure for a homogeneous distribution,
independently of the variance of the data.

For this reason, we choose to find the likelihood distribution of
the data reaching 1 per cent of homogeneity. That is, we assume
the likelihood distribution on the homogeneity scale, py[D(r)], is
a delta function at D, = 2.97:

pulD:2 ()] = 8[ Dy (r) — 2.97]. 27

We can then construct the cumulative PDF P(Ry < r), which
gives the probability that the homogeneity scale has been reached
at or before scale r, from

o0 Dy (r)
PRy <r)= / polDa(r)] (/ pu(x) dx) dDy(r)

oo o0

= / polD:(1)]dDy(r). (28)
2.97

2 In some cases, the WiggleZ data do fall below N' = 1 or above D; = 3;
this can be explained as the effect of shot noise introduced by the selection
function rather than a physical effect, as shown in our comparison with the
GiggleZ simulation in Section 6.2.
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Figure 11. Probability distributions for the scale of homogeneity, p(Ry),
for WiggleZ galaxies in each of the four redshift slices. The homogeneity
scale is defined as the scale where the data reach values 1 per cent away
from D = 3,i.e. D, =2.97.

That is, the probability of having reached homogeneity is the area
of the likelihood distribution of the data that falls at or above
D, =2097.

This cumulative probability is calculated at each scale . We can
then find the PDF for the homogeneity scale, p(Ry), from

dP(Ry <r)
dr ’

The PDFs for the homogeneity scale, for WiggleZ galaxies in
each redshift slice, are shown in Fig. 11. We have interpolated
between the data bins in order to obtain smoother PDFs. We find the
most probable Ry values from the mean of the distributions. These
are all between 70 and 81 2~! Mpc, and are listed in Table 4. They
represent the most probable scale at which the galaxy distribution
reaches 1 per cent of homogeneity. We also list the values found for
the bias-corrected data, which give the most probable homogeneity
scales for the matter distribution, assuming ACDM+WMAP.

p(Ry) = (29)

6 ROBUSTNESS OF HOMOGENEITY
MEASUREMENT

In this section, we address several issues that could potentially
influence our measurement of the homogeneity scale, and perform
tests to ensure the robustness of our results. We base our tests on
the 15-hr 0.5 < z < 0.7 region, which is the largest and most
populated WiggleZ subregion, but the results are applicable to the
entire survey.

6.1 Fractal model test of selection function
and boundary effects

A major potential source of bias in our results is the method used
to correct for edge effects and the selection function of the survey.
We have used 100 random catalogues to correct each individual
WiggleZ measurement, as described in Section 3.1. However, this
method can potentially bias homogeneity measurements, since it
weights measurements by the volume of spheres of radius r included
in the survey, and so assumes a homogeneous distribution outside
the survey (e.g. Coleman & Pietronero 1992; Sylos Labini et al.
2009). It is therefore important to check that this is not imposing

© 2012 The Authors, MNRAS 425, 116-134
Monthly Notices of the Royal Astronomical Society © 2012 RAS



any distortion in our measured correlation dimension, so producing
a ‘false relaxation’ to homogeneity.

To test this, we apply our correction method to a range of fractal
distributions of known correlation dimension. This has been done
previously by a number of works, e.g. Lemson & Sanders (1991),
Provenzale, Guzzo & Murante (1994) and Pan & Coles (2002).
This allows us to check that our method returns the correct input
correlation dimension up to the largest scales we measure in the
survey, and to quantify any distortion that may occur.

We generate our fractal distributions using the f-model, a simple
self-similar cascading model (see e.g. Castagnoli & Provenzale
1991). This method starts with a cube of side L, and splits it up
into M smaller cubes of side Ly/n (we take n = 2, so M = 8). Each
subcube is then assigned a probability p of surviving to the next
iteration. This is repeated for a certain number of iterations k, and
the resultant set of survived points is taken as the final distribution.
In the limit of an infinite number of iterations, this produces a
monofractal with a correlation dimension given by

log(pM)* _ log pM

D, =1li = . 30
2= 0% log nk logn G0

Our procedure for using S-models to test our analysis method is
as follows.

(i) We choose a range of D, values (2.7, 2.8, 2.9, 2.95 and 2.97),
and for each we generate 100 fractal galaxy distributions, with a
boxsize of (Lo h~' Gpc)®, where Ly is the length of the longest
side of the WiggleZ 15-hr 0.5 < z < 0.7 selection function grid
(623.5 ™! Mpc).

(i) We then sample each distribution with the WiggleZ selection
function for the 15-hr 0.5 < z < 0.7 region. We normalize the
resulting distribution to give the same number of points as WiggleZ
galaxies in this region. This gives us fractal mock catalogues, and
we then measure D, for these in the same way as for the WiggleZ
data, correcting the counts-in-spheres measurements with random
catalogues. This gives a result that is influenced by both the WiggleZ
selection function, and our correction method.

Fig. 12 shows the mean N (<r) and D;(r) results for the different
fractal distributions up to D, = 2.95, with the WiggleZ selection
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function and correction method applied. Even up to D, = 2.95, they
are clearly distinguishable from ACDM and the WiggleZ data. The
D, values measured are consistent with the input values up to at least
200 i~! Mpc, well above the homogeneity scales measured for the
data. These results indicate that the WiggleZ selection function and
correction method do not have a significant effect on the measured
correlation dimension up to the scales we measure for homogeneity.

It is notable that the size of the error bars gets smaller for models
with larger D,. This is a real effect in the model; for larger D,, more
boxes survive at each iteration, so there are a smaller number of
possible configurations for the final distribution, resulting in lower
variance for a box of a particular volume.

To quantify how well we can exclude fractal models, we fit a
line of constant D, to each set of fractal data, over the range [80,
300] ~~! Mpc (shown in Fig. 12). This gives us the best-fitting D,
value we would expect to measure for each fractal distribution over
this range, taking into account bias from the selection function. We
then find the formal probability of these values fitting the WiggleZ
data. Doing this, we find we can exclude a fractal dimension of
D>(r) =[2.9, 2.95, 2.97] at the [19,6,4]0 level. In other words, we
can exclude fractal distributions with dimension D,(r) < 2.97 at
over 99.99 per cent confidence on scales from 80 to 3004~! Mpc.

Our results agree with those of Lemson & Sanders (1991),
Provenzale et al. (1994) and Pan & Coles (2002), who also find that
for samples on scales larger than the homogeneity scale, boundary
corrections do not have a significant effect on the analysis. A further
check would be to test different types of fractal model other than
the B-model, but we leave this for future work. We also note that
we still assume an FRW metric in our fractal analysis; an improved
consistency check would be to calculate the actual metric in these
fractal models (see Section 7), but this is beyond the scope of this

paper.

6.2 Comparison with the GiggleZ N-body simulation

We have also compared our results with a ACDM cosmological
N-body simulation. This allows us to check that our analytical
ACDM+WMAP model (incorporating Kaiser and streaming mod-
els for redshift-space distortions) is consistent, over the relevant
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Figure 12. Fractal model comparisons of the measured correlation dimension from the WiggleZ 15-hr region, 0.5 < z < 0.7 redshift slice. The WiggleZ data
(black error bars) and ACDM model (blue curve) are compared with several different f-models with different fractal dimension (D, = 2.7, 2.8, 2.9 and 2.95),
which have been sampled with the 15-hr selection function and analysed in the same way as the WiggleZ data (coloured error bars). The uncertainties shown
are the error in the mean of 100 fractal realizations. The input fractal dimensions are shown as dotted lines with corresponding colours. The best-fitting D (r)

value fits over the range r = [80, 300] 2~ ! Mpc are shown as solid lines.
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Figure 13. Comparison of the GiggleZ N-body simulation with WiggleZ, for the 15-hr region 0.5 < z < 0.7 redshift slice. The N'(<r) results are shown on
the left, and D> (r) on the right. The WiggleZ data are shown as black data points, and a ACDM model is shown in blue. The results for the full GiggleZ box
are shown as the red crosses. The green crosses show the results for the GiggleZ simulation sampled with the WiggleZ 15-hr 0.5 < z < 0.7 selection function.

The measured homogeneity scale Ry is indicated for each.

scales, with a full simulation including non-linear effects. It also
provides a further test of selection function effects, since we can
show that homogeneity measurements of a ACDM distribution are
not distorted when the WiggleZ selection function is applied.

The GiggleZ (Giga-parsec WiggleZ) simulation (Poole et al.,
in preparation) is a suite of dark matter N-body simulations run
at Swinburne University of Technology, designed for theoretical
analyses of the WiggleZ data set. It was run using a modified ver-
sion of the N-body code GADGET-2 (Springel, Yoshida & White
2001) using a WMAPS cosmology. We use the main simulation,
which has a volume of (1000 2~! Mpc)? and 2160° particles of mass
7.5 x 10° ™' M.

Halo finding for GiggleZ was performed using SUBFIND (Springel
et al. 2001), which utilizes a friends-of-friends (FoF) algorithm
to identify coherent overdensities of particles and a substructure
analysis to determine bound overdensities within each FoF halo.
For our analysis, we rank-order the resulting SUBFIND substructure
catalogues by their maximum circular velocity (Vi) and select
a contiguous subset of 250 000 haloes (selected to yield a number
density comparable to the survey) over a range of V., chosen to
yield a bias comparable to that of WiggleZ. We use a catalogue at
a redshift of z = 0.593, corresponding to the mid-redshift of the
WiggleZ 0.5 < z < 0.7 redshift slice.

We add the effect of redshift-space distortions by shifting the
positions of the haloes according to their line-of-sight peculiar ve-
locities. That is, the comoving position of each halo relative to an
observer, x, is shifted by a vector Ax,

PN L (1)
lx| H(z)

where v,g = (x - v)/|x]| is the radial velocity of the halo along
the observer’s line of sight, and we place the observer at the same
coordinates relative to the GiggleZ box as for the WiggleZ selection
function grid.

We then calculate N'(<r) and D,(r) using the following two
different methods.

(1) Using the full GiggleZ box. We correct the measurement
using a random distribution within the same volume box, with 100
times the number of galaxies as the GiggleZ sample.

(i1) Applying the WiggleZ 15-hr 0.5 < z < 0.7 selection function
to GiggleZ. This creates a mock WiggleZ survey containing 10 830
galaxies. We correct the measurement using the random catalogues
used for the WiggleZ data. This allows us to see the effects induced
purely by the selection function.

The results are shown in Fig. 13. The full GiggleZ data set is
very consistent with both the WiggleZ data and the ACDM model.
The consistency with the model indicates that the implementation
of redshift-space distortions in the model, described in Section 4.2,
has a good level of accuracy, to scales as small as ~20 1~ Mpc.
The deviation of the smallest scale bin is a resolution effect, since
the GiggleZ catalogue is sparser than WiggleZ (with 10 830 galax-
ies, versus 17 928 WiggleZ galaxies in the same region and redshift
slice). The GiggleZ results both with and without the WiggleZ selec-
tion function are also consistent within the size of the WiggleZ error
bars, showing that the selection function and correction method do
not have a significant effect. It can be seen that the selection func-
tion causes a few data points in the A/(<r) plot to go below 1, and
in the D,(r) plot to go above 3. This shows that adding shot noise
can produce this apparent unphysical effect, explaining why this is
also seen in some of the WiggleZ results (Figs 5 and 6).

6.3 Comparison of different correction methods

To further demonstrate the robustness of our correction method, we
illustrate the results obtained for two alternative correction meth-
ods — first, using only complete spheres for the counts-in-spheres
measurements (the ‘exclusion’ method mentioned in Section 3.1),
but still correcting for the selection function, and secondly, using
no correction for the selection function. By using the exclusion
method, we do not have to deal with survey edge effects; however,
since WiggleZ is not volume limited, it is still necessary to use
random catalogues to correct for the selection function. That is, we
recalculate equation (4) but with G equal to the number of WiggleZ
galaxies at the centre of complete spheres of radius r. We show this
resultin Fig. 14, for the 15-hr 0.5 < z < 0.7 region, as red error bars,
where the uncertainty is calculated using our lognormal realizations.
We compare this to the result using our correction method (black
error bars). The red error bars are consistent with the black error
bars, but show more scatter and have higher noise, which increases
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Figure 14. Tllustration of the result using different correction methods, for the 15-hr 0.5 < z < 0.7 region. Black error bars show the result using our correction
method with random catalogues. The red error bars are obtained when only complete spheres are used in the counts-in-spheres measurement while still
correcting for the selection function. The, purple error bars show the result for complete spheres, with no selection function correction. In each case, the
uncertainties are calculated using lognormal realizations. The red and purple error bars are shifted slightly to the right for clarity.

for larger radius, reflecting the lower statistics where fewer spheres
contribute to the measurement. The measurements must also be cut
off at a lower radius, since not enough larger spheres fit inside the
survey region.

We can also compare the result without any selection function
correction, which illustrates the necessity of correcting for having
a non-volume-limited sample. However, WiggleZ contains holes in
the angular coverage, which are independent of assumptions about
completion, so we must still take these into account. We there-
fore normalize each N'(r) measurement by the volume within the
selection function included in that sphere. Therefore, we calculate

1 N'(r)
Gcomplctc(r) VSFﬁi X ,(_) ’

-/\/-no,corr(r) = (32)

complete spheres i
where Geompiete(7) is the number of WiggleZ galaxies at the centre
of complete spheres of radius r, Vgsg; is the volume within the
selection function of the ith galaxy, and p = nw/Vsp is the
mean density of WiggleZ, i.e. the number of WiggleZ galaxies
divided by the total volume in the selection function, excluding
holes. We show this in Fig. 14 as purple error bars, where the
uncertainty is again calculated using our lognormal realizations
(so the uncertainty assumes ACDM). Although there is a vertical
offset in the N (<r) plot, caused by the selection function, the
D;(r) results are remarkably similar to those when correcting for
the selection function, though again with more noise. There is still
a clear transition towards values close to D, = 3 on large scales.
The offset in V(<r) can be attributed to a selection effect: since we
use only complete spheres, we weight the measurement towards the
central part of the redshift range, where the completeness is highest
and so the number density of WiggleZ galaxies is highest. Since
Ds(r) is the slope of N (<r), it does not depend on the number
density itself and so is more robust when summing over a varying
selection function.

7 DISCUSSION

Our WiggleZ N'(<r) and D,(r) results show a very strong agree-
ment with an FRW-based ACDM model. However, one of the
strongest arguments against previous homogeneity measurements
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is that the method of correcting for survey selection functions, such
as using random catalogues as we do, can distort the data, produc-
ing a ‘false relaxation’ to homogeneity. We have therefore tested
this by applying the WiggleZ selection function to a range of in-
homogeneous fractal models and a ACDM N-body simulation. We
have shown that there is no significant impact on our homogene-
ity measurement, up to at least 200 #~! Mpc. In addition, we have
compared the results from our correction method to an analysis
using only complete spheres, with and without correcting for the
selection function, and have shown that these are consistent, further
demonstrating the robustness of our result. We can rule out fractals
with fractal dimension up to D, = 2.97, on scales between 80 and
300 2~! Mpc, at over 99.99 per cent confidence.

We can also be confident that our result is robust to any assump-
tions in modelling the WiggleZ survey selection function, since
Blake et al. (2010) showed that even extreme variations in mod-
elling the angular completeness produce only ~0.5¢ shifts in es-
timates of the power spectrum. Changes in the parametrization of
the redshift distribution were shown to cause larger deviations, but
only at scales >200 /4~ Mpc, which are well above the scales on
which we measure homogeneity.

Our result is a very good consistency check of ACDM. How-
ever, it is not independent of the assumption of the FRW metric.
A complication for all homogeneity measurements is that we can
only observe galaxies on our light cone, and not on spatial sur-
faces. Maartens (2011) points out that it is therefore not possible to
make a homogeneity measurement without making some assump-
tions, such as the FRW metric (to convert redshifts to distances)
and the cosmological principle. Indeed, we must always assume
an FRW-based model, ACDM in our case, to convert redshifts and
angles to distance coordinates. This is also problematic considering
that inhomogeneities produce perturbations in the FRW metric, so
can potentially distort distance measurements by affecting the paths
travelled by light rays (e.g. Wiltshire 2009; Meures & Bruni 2011).
However, it seems highly unlikely that our measurements would so
closely agree with FRW-based ACDM [in both the amplitude and
shape of the N'(<r) and D,(r) curves], if the distribution were, ac-
tually, inhomogeneous up to the largest scales probed, and we had
incorrectly assumed an FRW metric. We have tested our method
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using a fractal model, and shown that this gives a completely dif-
ferent form of these curves. Our assumption of FRW also seems
reasonable, since we know that distance measurements from Type
Ia supernovae fit the Hubble diagram well to first orderuptoz ~ 1.4
(Conley et al. 2011; Davis et al. 2011), so that any perturbations due
to inhomogeneities can only be a second- or higher-order effect. All
this means that we can take our results to be a strong consistency
check of FRW-based ACDM.

It would be possible to test this further by making isotropy mea-
surements in thin redshift shells, over a range of redshifts, with-
out converting them to distances. We could also directly test the
assumption of FRW, by calculating the non-FRW metrics of our
fractal models and testing our analysis on these. We could also cal-
culate the effects of metric perturbations for ACDM, including the
effects of backreaction, as in e.g. Buchert (2000), Li & Schwarz
(2007), Wiltshire (2007b) and Behrend, Brown & Robbers (2008).
This would allow us to test the effect of incorrectly assuming an
FRW metric. Alternatively, several possible consistency tests of
homogeneity and the Copernican Principle that do not assume FRW
have been suggested by e.g., Clarkson et al. (2008); Shafieloo &
Clarkson (2010); Maartens (2011); Heavens et al. (2011). However,
we leave all these suggestions for future work.

An alternative way of defining the ‘homogeneity scale’ was re-
cently suggested by Bagla et al. (2008) and Yadav et al. (2010), as
where the measured fractal dimension D, becomes consistent with
the ambient dimension within the 1o statistical uncertainty, oap, -
They make predictions for a ACDM model, by deriving an approxi-
mation for D, and oa D> given a particular correlation function, and
showing how these scale with sphere size. Using this, they predict
that the ‘true’ homogeneity scale in ACDM is 260 4~ Mpc. They
also predict that D, and OAD, scale the same way with the cor-
relation function, and so their definition of homogeneity does not
change with bias or redshift. Their definition is therefore beneficial,
as it is robust to the tracer galaxy population. It is also not arbitrary,
and indeed the scale above which the fractal dimension is consistent
with homogeneity within cosmic variance is arguably a physically
meaningful scale to define as homogeneous, since above this scale
the distribution cannot be distinguished from a homogeneous one.
However, as we have pointed out (Section 3.6), it is difficult to ap-
ply their definition to a real measurement, since their approximation
for op D, only accounts for the variance of the correlation function
(in the limit of weak clustering) and shot noise, but ignores errors
due to survey geometry and the selection function. These additional
contributions mean that real errors will always be larger, and so
will always measure a smaller homogeneity scale than the ‘true’
one. Since these errors will be different for different surveys, and
cannot be separated out from the variance in the underlying correla-
tion function, homogeneity measurements made in this way cannot
be easily compared between different surveys, or with theory. The
benefit of our method of defining the homogeneity scale, even if we
have to make an arbitrary choice about the value of AD, we accept
for homogeneity, is that it can be used to easily compare the results
from different surveys and with a theoretical model.

A homogeneity scale below 100 2~! Mpc may also seem to con-
tradict the fact that the correlation function has a known feature,
the BAO peak at ~105h~! Mpc (Eisenstein et al. 2005; Percival
et al. 2010; Beutler et al. 2011; Blake et al. 2011c). However, the
BAO peak has only a small impact on the counts-in-spheres statis-
tic. It is visible in our ACDM prediction for D,(r) [which is more
sensitive to it than N'(<r), since it is a differential measurement],
as a small dip at just over 100 2~! Mpc (see Fig. 7). It means that
the D,(r) curve does not increase monotonically around this scale,

so we must be careful if attempting to measure an intercept with
homogeneity that lies close to this. The magnitude of the distortion
due to the BAO peak, AD, is of order ~0.01 for » ~ 1 so does not
affect our homogeneity scale measured at D, = 2.97. However, it
is more significant for more highly biased tracers (as also pointed
out by Bagla et al. 2008), and for a highly biased population, such
as LRGs, it may be necessary to measure the homogeneity scale at
a D, value closer to 3, to avoid this region.

It has been pointed out (e.g. Sylos Labini & Pietronero 2010) that
measurements of large structures in galaxy surveys are seemingly
at odds with a homogeneity scale below 100 2~! Mpc. Previous sur-
veys have detected structures on scales much larger than this (de
Lapparent, Geller & Huchra 1989; Geller & Huchra 1989). The
largest observed structure in the Universe, the Sloan Great Wall,
which is 320 4~ Mpc long (Gott et al. 2005), appears inconsis-
tent with the existence of a homogeneity scale below 100 4~ Mpc.
However, this is not incompatible with our results, since we show
the scale where the data have D, > 2.97, and it is not impossible
to have fluctuations on scales larger than this. Also, these large
structures, including the Sloan Great Wall, are usually filamentary,
whereas we have measured a volume statistic which averages over
fluctuations.

8 CONCLUSION

We have measured the large-scale transition to homogeneity in the
distribution of galaxies, using the WiggleZ survey, in four redshift
bins between z = 0.1 and 0.9. We measured the mean, scaled counts-
in-spheres N (<r) and the correlation dimension, D,(r), and found
these to be in excellent agreement with a ACDM model with WMAP
parameters, including redshift-space distortions. We also presented
anew, model-independent method for determining the homogeneity
scale Ry from data. This involves fitting a polynomial curve to
the data, and finding where this intercepts chosen values close to
homogeneity. This is a more reliable method than finding where
the data come within 1o of homogeneity, since it does not depend
directly on the size of the error bars and is less susceptible to noise.
It also allows a direct comparison between data and theory, and
between different surveys of differing bias and redshift.
We summarize our results as follows.

(i) Our N (<r) and D,(r) results show a very strong agreement
with an FRW-based ACDM+WMAP model incorporating redshift-
space distortions. They show a clear transition from an inhomoge-
neous, clustered distribution on small scales, to a homogeneous one
on large scales. This transition matches that of the ACDM model.
We have thereby conducted a very stringent consistency check of
ACDM.

(ii) If we define the ‘homogeneity scale’ Ry as the scale where
the data become consistent with homogeneity within 1 per cent, then
from a likelihood analysis of D,(r), we measure Ry to be 71 + 8
h™"™Mpcatz~0.2,70 =5 h~'Mpc at z ~ 0.4, 81 = 5 h~'Mpc at
7z~ 0.6 and 75 & 4 h~'Mpc at z ~ 0.8. These values are consistent
with those of the ACDM+WMAP model with best-fitting bias, of
Ry = 76,78, 81 and 78 h~! Mpc.

(iii) We find that the homogeneity scale of our ACDM+WMAP
model increases with clustering amplitude b(z)o g(z). For a popula-
tion with fixed bias, we therefore predict the homogeneity scale to
grow over time, since og(z) increases due to growth of structure.
The bias of the WiggleZ galaxies increases with redshift, so the
measured Ry values do not change with redshift. If we correct our
data for bias, assuming ACDM, then we measure a homogeneity
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scale for the matter distribution that increases over time, consistent
with our ACDM+WMAP model.

(iv) The WiggleZ results are in excellent agreement with those
of the GiggleZ N-body simulation incorporating redshift-space
distortions. It is also in excellent agreement with our analytic
ACDM+WMAP model, showing that our model for redshift-space
distortions is accurate down to scales as small as 20 2~! Mpc.

(v) We can exclude a fractal with fractal dimension up to D, =
2.97, on scales between ~804~! Mpc and the largest scales probed
by our measurement, ~300 4~ Mpc, at 99.99 per cent confidence.

(vi) By applying our analysis to the GiggleZ simulation, as well
as a suite of fractal distributions of differing fractal dimension, we
have shown that our result is not significantly distorted by the Wig-
gleZ selection function and our method of correcting for it. We also
show that we obtain consistent results even using different correc-
tion methods, i.e. using only complete spheres for the measurement,
with and without correcting for incompleteness. This therefore con-
firms the reliability and robustness of our results.
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APPENDIX A: GAUSSIAN VERSUS TRUE
PROBABILITY DISTRIBUTIONS pp[D,(r)]

In our likelihood analysis for the homogeneity scale (Section 5.3),
we assume that the distribution of the 100 lognormal realizations
in each bin, pp[D,(r)], is Gaussian. This allows us to interpolate
between the data points and errors, thereby creating more finely
spaced pp[D,(r)] distributions, in order to determine a smoother
PDF for the homogeneity scale, P(Ry < r). However, it is not obvi-
ous that these distributions should be Gaussian. We therefore repeat
the analysis, but use the true distributions given by the lognormal
realizations.
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Figure Al. The probability distributions pp[D;(r)] for each of the r bins
(blue-to-red gradient indicates small to large radius) in the 0.5 < z < 0.7
redshift slice. Unlike in Fig. 10, we do not assume these are Gaussian
distributions; rather, we plot the distributions given by our 100 lognormal
realizations.
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Figure A2. Probability distributions for the homogeneity scale, p(Ry), for
WiggleZ galaxies in each of the four redshift slices. These are calculated
from the probability distributions pp[D2(r)] of the 100 lognormal realiza-
tions, rather than assuming Gaussians.

Table A1. Comparison of the most probable Ry values from a likeli-
hood analysis using the true pp[D;(r)] distributions from lognormal
realizations and assuming Gaussian distributions.

Redshift Ry for true pp[D>(r)] Ry assuming Gaussians
distributions (A~! Mpc) (h~" Mpc)

0.1 <z<03 79 £ 19 71+8

03<z<05 71+ 13 70+5

05<z<0.7 91 £ 16 81+5

0.7<z<09 84+ 16 715+4

This gives the pp[D,(r)] distributions shown in Fig. Al. They
are not smooth Gaussians, although they are close to Gaussian.
Their resolution is limited by the number of lognormal realizations,
so they could be improved by using more lognormal realizations,
although we do not do this here.

We then use these to calculate the PDF for the homogeneity
scale, P(Ry < r), in the same way as we did in Section 5.3 for
the Gaussian distributions. This gives the PDFs shown in Fig. A2,
for each redshift slice. The mean values and errors are shown in
Table Al, along with those from our original analysis. The values
are very similar, though the errors are larger. This is because we
cannot interpolate between data points as easily, and there are a finite
number of lognormal realizations contributing to the distribution for
each data point. This means the distribution is effectively smoothed,
giving larger uncertainties.
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