122 research outputs found
Genome engineering and plant breeding : impact on trait discovery and development
Key message: New tools for the precise modification of crops genes are now available for the engineering of new ideotypes. A future challenge in this emerging field of genome engineering is to develop efficient methods for allele mining. Abstract: Genome engineering tools are now available in plants, including major crops, to modify in a predictable manner a given gene. These new techniques have a tremendous potential for a spectacular acceleration of the plant breeding process. Here, we discuss how genetic diversity has always been the raw material for breeders and how they have always taken advantage of the best available science to use, and when possible, increase, this genetic diversity. We will present why the advent of these new techniques gives to the breeders extremely powerful tools for crop breeding, but also why this will require the breeders and researchers to characterize the genes underlying this genetic diversity more precisely. Tackling these challenges should permit the engineering of optimized alleles assortments in an unprecedented and controlled way
Crop wild relatives of the brinjal eggplant ( Solanum melongena ): Poorly represented in genebanks and many species at risk of extinction
This is the publisher's Early View pdf without final pagination .© 2016 Botanical Society of America. This is an open access article, available to all readers online, published under a creative commons license. The attached file is the published version of the article
Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing
Molecular markers linked to phenotypically important traits are of great interest especially when traits are difficult and/or costly to be observed. In tomato where a strong focus on resistance breeding has led to the introgression of several resistance genes, resistance traits have become important characteristics in distinctness, uniformity and stability (DUS) testing for Plant Breeders Rights (PBR) applications. Evaluation of disease traits in biological assays is not always straightforward because assays are often influenced by environmental factors, and difficulties in scoring exist. In this study, we describe the development and/or evaluation of molecular marker assays for the Verticillium genes Ve1 and Ve2, the tomato mosaic virusTm1 (linked marker), the tomato mosaic virus Tm2 and Tm22 genes, the Meloidogyne incognita Mi1-2 gene, the Fusarium I (linked marker) and I2 loci, which are obligatory traits in PBR testing. The marker assays were evaluated for their robustness in a ring test and then evaluated in a set of varieties. Although in general, results between biological assays and marker assays gave highly correlated results, marker assays showed an advantage over biological tests in that the results were clearer, i.e., homozygote/heterozygote presence of the resistance gene can be detected and heterogeneity in seed lots can be identified readily. Within the UPOV framework for granting of PBR, the markers have the potential to fulfil the requirements needed for implementation in DUS testing of candidate varieties and could complement or may be an alternative to the pathogenesis tests that are carried out at present
First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S-elaeagnifolium), and characterization of interspecific hybrids and backcrosses
[EN] Silverleaf nightshade (Solanum elaeagnifolium Cav.) is a drought tolerant invasive weed native to the New World. Despite its interest for common eggplant (S. melongena L.) breeding, up to now no success has been obtained in introgression breeding of eggplant with American Solanum species. Using an interspecific hybrid between common eggplant and S. elaeagnifolium as maternal parent we were able to obtain several fruits with viable seed after pollination with S. melongena pollen. Twenty individuals of the first backcross (BC1) generation were crossed again to the S. melongena parent and second backcross (BC2) seed was obtained for 17 of them, suggesting that most of the genome of S. elaeagnifolium is likely to be represented in the set of BC2 families. Five plants of each of the two parents, interspecific hybrid and BC1 generation were characterized with morphological descriptors and for pollen viability. The interspecific hybrid was intermediate among parents, although in overall morphological characteristics more similar to the S. elaeagnifolium parent. However, pollen viability of the hybrid was very low (2.6%). The BC1 generation was intermediate in characteristics between the hybrid and the S. melongena parent, with pollen viability increasing to an average of 19.4%. The root system of the inter specific hybrid indicated that it is able to explore larger areas of the soil than the S. melongena parent. The phenolics profile of the fruit of the two parents and hybrid revealed a higher diversity in phenolic constituents in S. elaeagnifolium compared to S. melongena, where the major phenolic compound was chlorogenic acid, while the interspecific hybrid was intermediate. By using flow cytometry it was found that S. elaeagnifolium, S. melongena, and their interspecific hybrid were diploid, although the genome size of S. elaeagnifolium was slightly smaller than that of S. melongena. Our results represent the first report of successful development of backcross generations of common eggplant with a New World Solarium species. This makes available a relatively unexplored, phylogenetically distant genepool for eggplant breeding. The backcross materials obtained can make a relevant contribution to developing new eggplant cultivars with new nutritional and environmental properties.This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website: http://www.cwrdiversity.org/.Funding was also received from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and from Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Edgar Garcia-Fortea is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2017 call) contract. Giulio Mangino is grateful to Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana for a predoctoral grant within the Santiago Grisolia programme (GRISOLIAP/2016/012). Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a postdoctoral grant within the Juan de la Cierva programme (FCJI-2015-24835), and to Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana and Fons Social Europeu for a postdoctoral grant (APOSTD/2018/014).García-Fortea, E.; Gramazio, P.; Vilanova Navarro, S.; Fita, A.; Mangino, G.; Villanueva-Párraga, G.; Arrones-Olmo, A.... (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S-elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturae. 246:563-573. https://doi.org/10.1016/j.scienta.2018.11.018S563573246Acosta, M. C., Bernardello, G., Guerra, M., & Moscone, E. A. (2005). Karyotype analysis in several South American species ofSolanumandLycianthes rantonnei(Solanaceae). TAXON, 54(3), 713-723. doi:10.2307/25065428Afful, N. T., Nyadanu, D., Akromah, R., Amoatey, H. M., Annor, C., & Diawouh, R. G. (2018). Evaluation of crossability studies between selected eggplant accessions with wild relatives S. torvum, S. anguivi and S. aethopicum (Shum group). Journal of Plant Breeding and Crop Science, 10(1), 1-12. doi:10.5897/jpbcs2017.0695Arao, T., Takeda, H., & Nishihara, E. (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting ontoSolanum torvumrootstock. Soil Science and Plant Nutrition, 54(4), 555-559. doi:10.1111/j.1747-0765.2008.00269.xAbdul-Baki, A. A. (1992). Determination of Pollen Viability in Tomatoes. Journal of the American Society for Horticultural Science, 117(3), 473-476. doi:10.21273/jashs.117.3.473Aubriot, X., Singh, P., & Knapp, S. (2016). Tropical Asian species show that the Old World clade of ‘spiny solanums’ (SolanumsubgenusLeptostemonum pro parte: Solanaceae) is not monophyletic. Botanical Journal of the Linnean Society, 181(2), 199-223. doi:10.1111/boj.12412Chen, X., Zhang, J., Chen, Y., Li, Q., Chen, F., Yuan, L., & Mi, G. (2013). Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China. Plant and Soil, 374(1-2), 121-130. doi:10.1007/s11104-013-1872-0Christodoulakis, N. S., Lampri, P.-N., & Fasseas, C. (2009). Structural and cytochemical investigation of the leaf of silverleaf nightshade (Solanum elaeagnifolium), a drought-resistant alien weed of the Greek flora. Australian Journal of Botany, 57(5), 432. doi:10.1071/bt08210Collonnier, C., Fock, I., Mariska, I., Servaes, A., Vedel, F., Siljak-Yakovlev, S., … Sihachakr, D. (2003). GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiology and Biochemistry, 41(5), 459-470. doi:10.1016/s0981-9428(03)00054-8Daunay, M. C., Chaput, M. H., Sihachakr, D., Allot, M., Vedel, F., & Ducreux, G. (1993). Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theoretical and Applied Genetics, 85-85(6-7), 841-850. doi:10.1007/bf00225027Dempewolf, H., Eastwood, R. J., Guarino, L., Khoury, C. K., Müller, J. V., & Toll, J. (2014). Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology and Sustainable Food Systems, 38(4), 369-377. doi:10.1080/21683565.2013.870629Dixon, R. A., & Harrison, M. J. (1990). Activation, Structure, and Organization of Genes Involved in Microbial Defense in Plants. Advances in Genetics, 165-234. doi:10.1016/s0065-2660(08)60527-1Dong, Z. Y., Wang, Y. M., Zhang, Z. J., Shen, Y., Lin, X. Y., Ou, X. F., … Liu, B. (2006). Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theoretical and Applied Genetics, 113(2), 196-205. doi:10.1007/s00122-006-0286-2Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241Gleddie, S., Keller, W. A., & Setterfield, G. (1986). Production and characterization of somatic hybrids between Solanum melongena L. and S. sisymbriifolium Lam. Theoretical and Applied Genetics, 71(4), 613-621. doi:10.1007/bf00264265Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCÍA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936Hahlbrock, K., & Scheel, D. (1989). Physiology and Molecular Biology of Phenylpropanoid Metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 347-369. doi:10.1146/annurev.pp.40.060189.002023Heslop-Harrison, J., Heslop-Harrison, Y., & Shivanna, K. R. (1984). The evaluation of pollen quality, and a further appraisal of the fluorochromatic (FCR) test procedure. Theoretical and Applied Genetics, 67(4), 367-375. doi:10.1007/bf00272876Isshiki, S., & Taura, T. (2003). Fertility restoration of hybrids betweenSolanum melongenaL. andS. aethiopicumL. Gilo Group by chromosome doubling and cytoplasmic effect on pollen fertility. Euphytica, 134(2), 195-201. doi:10.1023/b:euph.0000003883.39440.6dJarl, C. I., Rietveld, E. M., & de Haas, J. M. (1999). Transfer of fungal tolerance through interspecific somatic hybridisation between Solanum melongena and S. torvum. Plant Cell Reports, 18(9), 791-796. doi:10.1007/s002990050663Kashyap, V., Vinod Kumar, S., Collonnier, C., Fusari, F., Haicour, R., Rotino, G. ., … Rajam, M. . (2003). Biotechnology of eggplant. Scientia Horticulturae, 97(1), 1-25. doi:10.1016/s0304-4238(02)00140-1Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464Kaushik, P., Prohens, J., Vilanova, S., Gramazio, P., & Plazas, M. (2016). Phenotyping of Eggplant Wild Relatives and Interspecific Hybrids with Conventional and Phenomics Descriptors Provides Insight for Their Potential Utilization in Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00677King, S. R., Davis, A. R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2), 106-111. doi:10.1016/j.scienta.2010.08.001Knapp, S., Sagona, E., Carbonell, A. K. Z., & Chiarini, F. (2017). A revision of the Solanum elaeagnifolium clade (Elaeagnifolium clade; subgenus Leptostemonum, Solanaceae). PhytoKeys, 84, 1-104. doi:10.3897/phytokeys.84.12695Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039Kreike, C. M., & Stiekema, W. J. (1997). Reduced recombination and distorted segregation in aSolanum tuberosum(2x) ×S.spegazzinii(2x) hybrid. Genome, 40(2), 180-187. doi:10.1139/g97-026Lester, R. N. (1986). TAXONOMY OF SCARLET EGGPLANTS, SOLANUM AETHIOPICUM L. Acta Horticulturae, (182), 125-132. doi:10.17660/actahortic.1986.182.15LESTER, R. (1998). Embryo and Endosperm Function and Failure inSolanumSpecies and Hybrids. Annals of Botany, 82(4), 445-453. doi:10.1006/anbo.1998.0695Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2014). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201(3), 463-469. doi:10.1007/s10681-014-1234-xMekki, M. (2007). Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO Bulletin, 37(1), 114-118. doi:10.1111/j.1365-2338.2007.01094.xMeyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006Noda, N., Kanno, Y., Kato, N., Kazuma, K., & Suzuki, M. (2004). Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum). Physiologia Plantarum, 122(3), 305-313. doi:10.1111/j.1399-3054.2004.00407.xPlazas, M., Prohens, J., Cuñat, A., Vilanova, S., Gramazio, P., Herraiz, F., & Andújar, I. (2014). Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. International Journal of Molecular Sciences, 15(10), 17221-17241. doi:10.3390/ijms151017221Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34Prabhu, M., Natarajan, S., Veeraragavathatham, D., & Pugalendhi, L. (2009). The biochemical basis of shoot and fruit borer resistance in interspecific progenies of brinjal (Solanum melongena). EurAsian Journal of Biosciences, 50-57. doi:10.5053/ejobios.2009.3.0.7Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-xProhens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030Sabatino, L., Iapichino, G., D’Anna, F., Palazzolo, E., Mennella, G., & Rotino, G. L. (2018). Hybrids and allied species as potential rootstocks for eggplant: Effect of grafting on vigour, yield and overall fruit quality traits. Scientia Horticulturae, 228, 81-90. doi:10.1016/j.scienta.2017.10.020Scaldaferro, M., Chiarini, F., Santiñaque, F. F., Bernardello, G., & Moscone, E. A. (2012). Geographical pattern and ploidy levels of the weed Solanum elaeagnifolium (Solanaceae) from Argentina. Genetic Resources and Crop Evolution, 59(8), 1833-1847. doi:10.1007/s10722-012-9807-9Shichijo, C., Hamada, T., Hiraoka, M., Johnson, C., & Hashimoto, T. (1993). Enhancement of red-light-induced anthocyanin synthesis in sorghum first internodes by moderate low temperature given in the pre-irradiation culture period. Planta, 191(2). doi:10.1007/bf00199755Sihachakr, D., Haicour, R., Chaput, M.-H., Barrientos, E., Ducreux, G., & Rossignol, L. (1989). Somatic hybrid plants produced by electrofusion between Solanum melongena L. and Solanum torvum Sw. Theoretical and Applied Genetics, 77(1), 1-6. doi:10.1007/bf00292307Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704Toppino, L., Valè, G., & Rotino, G. L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22(2), 237-250. doi:10.1007/s11032-008-9170-xVan der Weerden, G. M., & Barendse, G. W. M. (2007). A WEB-BASED SEARCHABLE DATABASE DEVELOPED FOR THE EGGNET PROJECT AND APPLIED TO THE RADBOUD UNIVERSITY SOLANACEAE DATABASE. Acta Horticulturae, (745), 503-506. doi:10.17660/actahortic.2007.745.37Varoquaux, F., Blanvillain, R., Delseny, M., & Gallois, P. (2000). Less is better: new approaches for seedless fruit production. Trends in Biotechnology, 18(6), 233-242. doi:10.1016/s0167-7799(00)01448-7Vorontsova, M. S., Stern, S., Bohs, L., & Knapp, S. (2013). African spinySolanum(subgenusLeptostemonum, Solanaceae): a thorny phylogenetic tangle. Botanical Journal of the Linnean Society, 173(2), 176-193. doi:10.1111/boj.12053Wall, J. R. (1970). EXPERIMENTAL INTROGRESSION IN THE GENUSPHASEOLUS.I. EFFECT OF MATING SYSTEMS ON INTERSPECIFIC GENE FLOW. Evolution, 24(2), 356-366. doi:10.1111/j.1558-5646.1970.tb01767.xWang, Y.-M., Dong, Z.-Y., Zhang, Z.-J., Lin, X.-Y., Shen, Y., Zhou, D., & Liu, B. (2005). Extensive de Novo Genomic Variation in Rice Induced by Introgression From Wild Rice (Zizania latifolia Griseb.). Genetics, 170(4), 1945-1956. doi:10.1534/genetics.105.040964Whitaker, B. D., & Stommel, J. R. (2003). Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongena L.) Cultivars. Journal of Agricultural and Food Chemistry, 51(11), 3448-3454. doi:10.1021/jf026250bWu, S.-B., Meyer, R. S., Whitaker, B. D., Litt, A., & Kennelly, E. J. (2012). Antioxidant Glucosylated Caffeoylquinic Acid Derivatives in the Invasive Tropical Soda Apple, Solanum viarum. Journal of Natural Products, 75(12), 2246-2250. doi:10.1021/np300553tZhou, X., Bao, S., Liu, J., Yang, Y., & Zhuang, Y. (2018). Production and characterization of an amphidiploid derived from interspecific hybridization between Solanum melongena L. and Solanum aculeatissimum Jacq. Scientia Horticulturae, 230, 102-106. doi:10.1016/j.scienta.2017.11.02
Grafted eggplant yield, quality and growth in infested soil with Verticillium dahliae and Meloidogyne incognita
WOS: 000276086700017The objective of this work was to evaluate the effect of grafting (onto Solanum torvum Sw.) on plant growth, yield and fruit quality of the Pala and Faselis eggplant (Solanum melongena L.) cultivars, grown in a soil infested with Verticillium dahliae Kleb. and Meloidogyne incognita, or in noninfested soil. Soil infestation decreased yield, plant height, final above-ground biomass, and also reduced fruit mean weight and shoot dry weight depending on cultivar or grafting. Grafting decreased fruit oxalic acid and the soluble solid contents, and increased mean fruit weight, depending on cultivar and soil infestation. Grafting also reduced the negative effects of the pathogens on disease index, plant height and shoot dry weight. Cultivar Pala was more vigorous than Faselis, and S. torvum was a vigorous rootstock. The combination of a vigorous rootstock with a weak cultivar (Faselis) is more profitable than that of a vigorous rootstock and a vigorous cultivar (Pala). Using S. torvum as a rootstock for cultivar Faselis, grown in soil infested with the pathogens, is most likely to be useful in conventional and low-input sustainable horticulture, since grafting increases protection against the pathogens, and reduces the losses in quality and yield
Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background
[EN] Advanced backcrosses (ABs) and introgression lines (ILs) of eggplant (Solanum melongena) can speed up genetics and genomics studies and breeding in this crop. We have developed the first full set of ABs and ILs in eggplant using Solanum incanum, a wild eggplant that has a relatively high tolerance to drought, as a donor parent. The development of these ABs and IL eggplant populations had a low efficiency in the early stages, because of the lack of molecular markers and genomic tools. However, this dramatically improved after performing genotyping-by-sequencing in the first round of selfing, followed by high-resolution-melting single nucleotide polymorphism genotyping in subsequent selection steps. A set of 73 selected ABs covered 99% of the S. incanum genome, while 25 fixed immortal ILs, each carrying a single introgressed fragment in homozygosis, altogether spanned 61.7% of the S. incanum genome. The introgressed size fragment in the ILs contained between 0.1 and 10.9% of the S. incanum genome, with a mean value of 4.3%. Sixty-eight candidate genes involved in drought tolerance were identified in the set of ILs. This first set of ABs and ILs of eggplant will be extremely useful for the genetic dissection of traits of interest for eggplant, and represents an elite material for introduction into the breeding pipelines for developing new eggplant cultivars adapted to the challenges posed by the climate-change scenario.This work has been funded in part by the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives," which is supported by the Government of Norway. This project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website: http://www.cwrdiversity.org/. Funding has also been received from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and from Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL201564755-R from MINECO/ FEDER). PG is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract. MP is grateful to Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva programme (FCJI-2015-24835). GM is grateful to Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana for a pre-doctoral grant within the Santiago Grisolia programme (GRISOLIAP/2016/012). Authors also thank the Italian Eggplant Genome Sequencing Consortium for providing access to an improved version of the eggplant genome.Gramazio, P.; Prohens Tomás, J.; Plazas Ávila, MDLO.; Mangino, G.; Herraiz García, FJ.; Vilanova Navarro, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science. 8. https://doi.org/10.3389/fpls.2017.01477S1477
CONTRIBUTION A L'ANALYSE DES COMBINAISONS GENOMIQUES OBTENUES PAR HYBRIDATION SOMATIQUE ENTRE L'AUBERGINE (S. MELONGENA L.) ET DES ESPECES VOISINES APPARENTEES RESISTANTES A DES MALADIES TELLURIQUES
LE SEUL MOYEN DE LUTTE VERITABLEMENT EFFICACE CONTRE LES DEUX PRINCIPALES MALADIES DE L'AUBERGINE, QUE SONT LE FLETRISSEMENT BACTERIEN (RALSTONIA SOLANACEARUM) ET LA VERTICILLIOSE (VERTICILLIUM DAHLIAE), EST LE DEVELOPPEMENT DE MATERIEL GENETIQUE RESISTANT. CETTE ETUDE A EU POUR OBJET D'ANALYSER LES POSSIBILITES DE TRANSFERT DE GENES DE RESISTANCE A CES MALADIES TELLURIQUES PAR FUSION SOMATIQUE INTERSPECIFIQUE. DES HYBRIDES SOMATIQUES SYMETRIQUES ONT ETE PRODUITS PAR ELECTROFUSION DE PROTOPLASTES ENTRE SOLANUM MELONGENA ET TROIS ESPECES APPARENTEES RESISTANTES : S. AETHIOPICUM, S. TORVUM ET S. SISYMBRIFOLIUM. APRES DETERMINATION DE LEUR NIVEAU DE PLOIDIE PAR CYTOMETRIE EN FLUX, LE CARACTERE HYBRIDE DES PLANTES REGENEREES A ETE DEMONTRE PAR DES ANALYSES MORPHOLOGIQUES, BIOCHIMIQUES (ISOENZYMES), CYTOGENETIQUES (HYBRIDATION GENOMIQUE IN SITU) ET MOLECULAIRES (RAPDS, MICROSATELLITES, CAPSS). LA FERTILITE DES HYBRIDES PRODUITS EST APPARUE INVERSEMENT PROPORTIONNELLE A LA DISTANCE PHYLOGENETIQUE SEPARANT LES PARTENAIRES DE FUSION. DES TESTS D'INOCULATION IN VITRO ONT ETE ADAPTES A L'AUBERGINE, ET ONT MONTRE QUE PLUSIEURS HYBRIDES EXPRIMAIENT DES NIVEAUX DE RESISTANCE, AUX DEUX RACES DE RALSTONIA SOLANACEARUM ET A LA SOUCHE DE VERTICILLIUM DAHLIAE TESTEES, PROCHES DE CEUX DES ESPECES APPARENTEES OU INTERMEDIAIRES ENTRE LEURS DEUX PARENTS. DES TESTS AU CHAMP ONT CONFIRME LA RESISTANCE AU FLETRISSEMENT BACTERIEN DES HYBRIDES D'AUBERGINE ET DE S. AETHIOPICUM. LES HYBRIDES SOMATIQUES SYMETRIQUES LES PLUS FERTILES ONT ETE RAMENES A L'ETAT DIHAPLOIDE PAR ANDROGENESE IN VITRO EN UTILISANT LA CULTURE D'ANTHERES ET DE MICROSPORES. LES DIHAPLOIDES PRODUITS, DONT LA MORPHOLOGIE ET LES NIVEAUX DE RESISTANCE PRESENTAIENT UNE ASSEZ GRANDE VARIABILITE, ONT CONSERVE UNE FERTILITE SUFFISANTE POUR PERMETTRE LE RETROCROISEMENT DES PLUS RESISTANTS D'ENTRE EUX SUR L'AUBERGINE. AFIN D'AMELIORER LA FERTILITE DES HYBRIDES OBTENUS ENTRE S. MELONGENA ET LES DEUX ESPECES ELOIGNEES S. TORVUM ET S. SISYMBRIFOLIUM, DES EXPERIENCES DE FUSION ASYMETRIQUE ONT ETE REALISEES PAR IRRADIATION AUX RAYONS UV DES PROTOPLASTES DU PARENT DONNEUR. LES ANALYSES MOLECULAIRES ET LES TESTS DE RESISTANCE REALISES N'ONT PAS ETE SUFFISANTS POUR CONFIRMER L'HYBRIDITE DES PLANTES REGENEREES. CELLE-CI N'A PU ETRE QUE SUGGEREE PAR LEUR DIFFICULTE DE DEVELOPPEMENT IN VITRO ET EN SERRE, ET LEUR NIVEAU DE PLOIDIE.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens
Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR–induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in
- …