368 research outputs found

    Self-assembly of carbon-nanotube-based single electron memories

    Full text link
    We demonstrate wafer-scale integration of single electron memories based on carbon nanotube field effect transistors (cnfets) by a complete self assembly process. First, a dry self assembly based on a Hot Filament assisted Chemical Vapor Deposition technique allows both localized growth and in situ electrical connection of carbon nanotubes on predefined catalytic electrodes. The semiconducting carbon nanotubes integration yield can exceed 50% for a batch. Secondly, a wet self-assembly attaches single 30 nm-diameter gold bead in the nanotube vicinity via chemical functionalization. The bead acts as the memory storage node while the cnfet operated in the subthreshold regime is an electrometer having exponential gain. Below 50 K, the transfer characteristics of some functionalized cnfets show highly reproducible hysteretical steps whose height can reach one decade of current. Evaluation of the capacitance confirms these current steps originate from single electron transfers between the bead and the nanotubes with a time retention exceeding 550s at 1.5K

    The XMM-Newton Ω\Omega Project

    Full text link
    The abundance of high-redshift galaxy clusters depends sensitively on the matter density \OmM and, to a lesser extent, on the cosmological constant Λ\Lambda. Measurements of this abundance therefore constrain these fundamental cosmological parameters, and in a manner independent and complementary to other methods, such as observations of the cosmic microwave background and distance measurements. Cluster abundance is best measured by the X-ray temperature function, as opposed to luminosity, because temperature and mass are tightly correlated, as demonstrated by numerical simulations. Taking advantage of the sensitivity of XMM-Newton, our Guaranteed Time program aims at measuring the temperature of the highest redshift (z>0.4) SHARC clusters, with the ultimate goal of constraining both \OmM and Λ\Lambda.Comment: To appear in the Proceedings of the XXI Moriond Conference: Galaxy Clusters and the High Redshift Universe Observed in X-rays, edited by D. Neumann, F. Durret, & J. Tran Thanh Va

    The XMM–NEWTON Ω Project: I. The X-ray luminosity – temperature relation at z>0.4

    Get PDF
    We describe XMM-Newton Guaranteed Time observations of a sample of eight high redshift (0.45 < z < rvirial) bolometric luminosities, performed β-model fits to the radial surface profiles and made spectral fits to a single temperature isothermal model. We describe data analysis techniques that pay particular attention to background mitigation. We have also estimated temperatures and luminosities for two known clusters (Abell 2246 and RXJ1325.0-3814), and one new high redshift cluste r candidate (XMMU J084701.8 +345117), that were detected o ff-axis. Characterizing the L x − Tx relation as L x = L 6 ( T 6keV ) α , we find L 6 = 15 . 9 + 7 . 6 − 5 . 2 × 1044erg s − 1 and α =2.7 ±0.4 for an Ω Λ = 0 . 0 , Ω M = 1 .0, H0 = 50 km s − 1 Mpc − 1 cosmology at a typical redshift z ∼ 0 .55. Comparing with the low redshift study by Markevitch, 1998, we find α to be in agreement, and assuming L x − Tx to evolve as (1 + z ) A , we find A =0.68 ±0.26 for the same cosmology and A = 1 .52 + 0 .26 − 0 .27 for an Ω Λ = 0 . 7 , Ω M = 0 . 3 cosmology. Our A values are very similar to those found previously by Vikhlinin et al., 2002 using a compilation of Chandra observations of 0 .39 < z < 1 .26 clusters. We conclude that there is now evidence from both XMM-Newton and Chandra for an evolutionary trend in the L x − Tx relation. This evolution is significantly below the level expected from the predictions of the self-similar model for an Ω Λ = 0 . 0 , Ω M = 1 .0, cosmology, but consistent with self-similar model in an Ω Λ = 0 . 7 , Ω M = 0 . 3 cosmology. Our observations lend support to the robustness and completeness of the SHARC and 160SD surveys

    XMMNewtonXMM-Newton Ω\Omega project: III. Gas mass fraction shape in high redshift clusters

    Full text link
    We study the gas mass fraction, f_gas,f\_{\rm gas}, behavior in XMMNewtonXMM-Newton Ω\Omega project. The typical f_gasf\_{\rm gas} shape of high redshift galaxy clusters follows the global shape inferred at low redshift quite well. This result is consistent with the gravitational instability picture leading to self similar structures for both the dark and baryonic matter. However, the mean f_gasindistantclustersshowssomedifferencestolocalones,indicatingadeparturefromstrictscaling.Thisresultisconsistentwiththeobservedevolutionintheluminositytemperaturerelation.Wequantitativelyinvestigatethisdeparturefromscalinglaws.Withinthelocalsampleweused,amoderatebutclearvariationoftheamplitudeofthegasmassfractionwithtemperatureisfound,atrendthatweakensintheouterregions.Thesevariationsdonotexplaindeparturefromscalinglawsofourdistantclusters.Animportantimplicationofourresultsisthatthegasfractionevolution,atestofthecosmologicalparameters,canleadtobiasedvalueswhenappliedatradiismallerthanthevirialradius.Fromourf\_{\rm gas} in distant clusters shows some differences to local ones, indicating a departure from strict scaling. This result is consistent with the observed evolution in the luminosity-temperature relation. We quantitatively investigate this departure from scaling laws. Within the local sample we used, a moderate but clear variation of the amplitude of the gas mass fraction with temperature is found, a trend that weakens in the outer regions. These variations do not explain departure from scaling laws of our distant clusters. An important implication of our results is that the gas fraction evolution, a test of the cosmological parameters, can lead to biased values when applied at radii smaller than the virial radius. From our XMM$ clusters, the apparent gas fraction at the virial radius is consistent with a non-evolving universal value in a high matter density model and not with a concordance.Comment: Accepted, A&A, in pres

    Circulation and oxygen cycling in the Mediterranean Sea: Sensitivity to future climate change

    Get PDF
    Climate change is expected to increase temperatures and decrease precipitation in the Mediterranean Sea (MS) basin, causing substantial changes in the thermohaline circulation (THC) of both the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS). The exact nature of future circulation changes remains highly uncertain, however, with forecasts varying from a weakening to a strengthening of the THC. Here we assess the sensitivity of dissolved oxygen (O2) distributions in the WMS and EMS to THC changes using a mass balance model, which represents the exchanges of O2 between surface, intermediate, and deep water reservoirs, and through the Straits of Sicily and Gibraltar. Perturbations spanning the ranges in O2 solubility, aerobic respiration kinetics, and THC changes projected for the year 2100 are imposed to the O2 model. In all scenarios tested, the entire MS remains fully oxygenated after 100 years; depending on the THC regime, average deep water O2 concentrations fall in the ranges 151–205 and 160–219 µM in the WMS and EMS, respectively. On longer timescales (>1000 years), the scenario with the largest (>74%) decline in deep water formation rate leads to deep water hypoxia in the EMS but, even then, the WMS deep water remains oxygenated. In addition, a weakening of THC may result in a negative feedback on O2 consumption as supply of labile dissolved organic carbon to deep water decreases. Thus, it appears unlikely that climate-driven changes in THC will cause severe O2 depletion of the deep water masses of the MS in the foreseeable future

    Lateral Orbitofrontal Cortex Involvement in Initial Negative Aesthetic Impression Formation

    Get PDF
    It is well established that aesthetic appreciation is related with activity in several different brain regions. The identification of the neural correlates of beauty or liking ratings has been the focus of most prior studies. Not much attention has been directed towards the fact that humans are surrounded by objects that lead them to experience aesthetic indifference or leave them with a negative aesthetic impression. Here we explore the neural substrate of such experiences. Given the neuroimaging techniques that have been used, little is known about the temporal features of such brain activity. By means of magnetoencephalography we registered the moment at which brain activity differed while participants viewed images they considered to be beautiful or not. Results show that the first differential activity appears between 300 and 400 ms after stimulus onset. During this period activity in right lateral orbitofrontal cortex (lOFC) was greater while participants rated visual stimuli as not beautiful than when they rated them as beautiful. We argue that this activity is associated with an initial negative aesthetic impression formation, driven by the relative hedonic value of stimuli regarded as not beautiful. Additionally, our results contribute to the understanding of the nature of the functional roles of the lOFC

    Conservation Planning for Ecosystem Services

    Get PDF
    Despite increasing attention to the human dimension of conservation projects, a rigorous, systematic methodology for planning for ecosystem services has not been developed. This is in part because flows of ecosystem services remain poorly characterized at local-to-regional scales, and their protection has not generally been made a priority. We used a spatially explicit conservation planning framework to explore the trade-offs and opportunities for aligning conservation goals for biodiversity with six ecosystem services (carbon storage, flood control, forage production, outdoor recreation, crop pollination, and water provision) in the Central Coast ecoregion of California, United States. We found weak positive and some weak negative associations between the priority areas for biodiversity conservation and the flows of the six ecosystem services across the ecoregion. Excluding the two agriculture-focused services—crop pollination and forage production—eliminates all negative correlations. We compared the degree to which four contrasting conservation network designs protect biodiversity and the flow of the six services. We found that biodiversity conservation protects substantial collateral flows of services. Targeting ecosystem services directly can meet the multiple ecosystem services and biodiversity goals more efficiently but cannot substitute for targeted biodiversity protection (biodiversity losses of 44% relative to targeting biodiversity alone). Strategically targeting only biodiversity plus the four positively associated services offers much promise (relative biodiversity losses of 7%). Here we present an initial analytical framework for integrating biodiversity and ecosystem services in conservation planning and illustrate its application. We found that although there are important potential trade-offs between conservation for biodiversity and for ecosystem services, a systematic planning framework offers scope for identifying valuable synergies

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015-2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O-3 and the total gaseous oxidant (O-X = NO2 + O-3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015-2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples' mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015-2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O-3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of similar to 70%. The SO2 anomalies were negative for 2020 compared to 2015-2019 (between similar to 25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to similar to 40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of similar to 60%). Analysis of the total oxidant (OX = NO2 + O-3) showed that primary NO2 emissions at urban locations were greater than the O-3 production, whereas at background sites, O-X was mostly driven by the regional contributions rather than local NO2 and O-3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewe
    corecore