We study the gas mass fraction, f_gas, behavior in XMM−NewtonΩ project. The typical f_gas shape of high redshift galaxy
clusters follows the global shape inferred at low redshift quite well. This
result is consistent with the gravitational instability picture leading to self
similar structures for both the dark and baryonic matter. However, the mean
f_gasindistantclustersshowssomedifferencestolocalones,indicatingadeparturefromstrictscaling.Thisresultisconsistentwiththeobservedevolutionintheluminosity−temperaturerelation.Wequantitativelyinvestigatethisdeparturefromscalinglaws.Withinthelocalsampleweused,amoderatebutclearvariationoftheamplitudeofthegasmassfractionwithtemperatureisfound,atrendthatweakensintheouterregions.Thesevariationsdonotexplaindeparturefromscalinglawsofourdistantclusters.Animportantimplicationofourresultsisthatthegasfractionevolution,atestofthecosmologicalparameters,canleadtobiasedvalueswhenappliedatradiismallerthanthevirialradius.FromourXMM$ clusters, the apparent gas
fraction at the virial radius is consistent with a non-evolving universal value
in a high matter density model and not with a concordance.Comment: Accepted, A&A, in pres