196 research outputs found

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia

    Get PDF
    The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1α expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1α mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1α protein response and the suppression of HIF-1α mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1α promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1α mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1α- (but not HIF-2α-) dependent manner. Finally, REST promotes the resolution of HIF-1α protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1α in prolonged hypoxia, thus contributing to the resolution of the HIF-1α response

    Acute appendicitis: transcript profiling of blood identifies promising biomarkers and potential underlying processes

    Get PDF
    Background The diagnosis of acute appendicitis can be surprisingly difficult without computed tomography, which carries significant radiation exposure. Circulating blood cells may carry informative changes in their RNA expression profile that would signal internal infection or inflammation of the appendix. Methods Genome-wide expression profiling was applied to whole blood RNA of acute appendicitis patients versus patients with other abdominal disorders, in order to identify biomarkers of appendicitis. From a large cohort of emergency patients, a discovery set of patients with surgically confirmed appendicitis, or abdominal pain from other causes, was identified. RNA from whole blood was profiled by microarrays, and RNA levels were filtered by a combined fold-change (\u3e2) and p value (\u3c0.05). A separate set of patients, including patients with respiratory infections, was used to validate a partial least squares discriminant (PLSD) prediction model. Results Transcript profiling identified 37 differentially expressed genes (DEG) in appendicitis versus abdominal pain patients. The DEG list contained 3 major ontologies: infection-related, inflammation-related, and ribosomal processing. Appendicitis patients had lower level of neutrophil defensin mRNA (DEFA1,3), but higher levels of alkaline phosphatase (ALPL) and interleukin-8 receptor-ß (CXCR2/IL8RB), which was confirmed in a larger cohort of 60 patients using droplet digital PCR (ddPCR). Conclusions Patients with acute appendicitis have detectable changes in the mRNA expression levels of factors related to neutrophil innate defense systems. The low defensin mRNA levels suggest that appendicitis patient’s immune cells are not directly activated by pathogens, but are primed by diffusible factors in the microenvironment of the infection. The detected biomarkers are consistent with prior evidence that biofilm-forming bacteria in the appendix may be an important factor in appendicitis

    Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron is an important micronutrient for all living organisms. Almost 25% of the world population is affected by iron deficiency, a leading cause of anemia. In plants, iron deficiency leads to chlorosis and reduced yield. Both animals and plants may suffer from iron deficiency when their diet or environment lacks bioavailable iron. A sustainable way to reduce iron malnutrition in humans is to develop staple crops with increased content of bioavailable iron. Knowledge of where and how iron accumulates in seeds of crop plants will increase the understanding of plant iron metabolism and will assist in the production of staples with increased bioavailable iron.</p> <p>Results</p> <p>Here we reveal the distribution of iron in seeds of three <it>Phaseolus </it>species including thirteen genotypes of <it>P. vulgaris</it>, <it>P. coccineus</it>, and <it>P. lunatus</it>. We showed that high concentrations of iron accumulate in cells surrounding the provascular tissue of <it>P. vulgaris </it>and <it>P. coccineus </it>seeds. Using the Perls' Prussian blue method, we were able to detect iron in the cytoplasm of epidermal cells, cells near the epidermis, and cells surrounding the provascular tissue. In contrast, the protein ferritin that has been suggested as the major iron storage protein in legumes was only detected in the amyloplasts of the seed embryo. Using the non-destructive micro-PIXE (Particle Induced X-ray Emission) technique we show that the tissue in the proximity of the provascular bundles holds up to 500 μg g<sup>-1 </sup>of iron, depending on the genotype. In contrast to <it>P. vulgaris </it>and <it>P. coccineus</it>, we did not observe iron accumulation in the cells surrounding the provascular tissues of <it>P. lunatus </it>cotyledons. A novel iron-rich genotype, NUA35, with a high concentration of iron both in the seed coat and cotyledons was bred from a cross between an Andean and a Mesoamerican genotype.</p> <p>Conclusions</p> <p>The presented results emphasize the importance of complementing research in model organisms with analysis in crop plants and they suggest that iron distribution criteria should be integrated into selection strategies for bean biofortification.</p

    DNA Supercoiling: an Ancestral Regulator of Gene Expression in Pathogenic Bacteria?

    Get PDF
    International audienceDNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms , in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species

    Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolutionary novelties often appear by conferring completely new functions to pre-existing structures or by innovating the mechanism through which a particular function is performed. Sound production plays a central role in the behavior of frogs, which use their calls to delimit territories and attract mates. Therefore, frogs have evolved complex vocal structures capable of producing a wide variety of advertising sounds. It is generally acknowledged that most frogs call by moving an air column from the lungs through the glottis with the remarkable exception of the family Pipidae, whose members share a highly specialized sound production mechanism independent of air movement.</p> <p>Results</p> <p>Here, we performed behavioral observations in the poorly known African pipid genus <it>Pseudhymenochirus </it>and document that the sound production in this aquatic frog is almost certainly air-driven. However, morphological comparisons revealed an indisputable pipid nature of <it>Pseudhymenochirus </it>larynx. To place this paradoxical pattern into an evolutionary framework, we reconstructed robust molecular phylogenies of pipids based on complete mitochondrial genomes and nine nuclear protein-coding genes that coincided in placing <it>Pseudhymenochirus </it>nested among other pipids.</p> <p>Conclusions</p> <p>We conclude that although <it>Pseudhymenochirus </it>probably has evolved a reversal to the ancestral non-pipid condition of air-driven sound production, the mechanism through which it occurs is an evolutionary innovation based on the derived larynx of pipids. This strengthens the idea that evolutionary solutions to functional problems often emerge based on previous structures, and for this reason, innovations largely depend on possibilities and constraints predefined by the particular history of each lineage.</p

    Comparing generic drug markets in Europe and the United States: prices, volumes, and spending

    Get PDF
    Our study indicates that there are opportunities for cost savings in generic drug markets in Europe and the United States. Regulators should make it easier for generic drugs to reach the market. Regulators and payers should apply measures to stimulate price competition among generic drugmakers and to increase generic drug use. To meaningfully evaluate policy options, it is important to analyze historical context and understand why similar initiatives failed previously. Context: Rising drug prices are putting pressure on health care budgets. Policymakers are assessing how they can save money through generic drugs. Methods: We compared generic drug prices and market shares in 13 European countries, using data from 2013, to assess the amount of variation that exists between countries. To place these results in context, we reviewed evidence from recent studies on the prices and use of generics in Europe and the United States. We also surveyed peer‐reviewed studies, gray literature, and books published since 2000 to (1) outline existing generic drug policies in European countries and the United States; (2) identify ways to increase generic drug use and to promote price competition among generic drug companies; and (3) explore barriers to implementing reform of generic drug policies, using a historical example from the United States as a case study. Findings: The prices and market shares of generics vary widely across Europe. For example, prices charged by manufacturers in Switzerland are, on average, more than 2.5 times those in Germany and more than 6 times those in the United Kingdom, based on the results of a commonly used price index. The proportion of prescriptions filled with generics ranges from 17% in Switzerland to 83% in the United Kingdom. By comparison, the United States has historically had low generic drug prices and high rates of generic drug use (84% in 2013), but has in recent years experienced sharp price increases for some off‐patent products. There are policy solutions to address issues in Europe and the United States, such as streamlining the generic drug approval process and requiring generic prescribing and substitution where such policies are not yet in place. The history of substitution laws in the United States provides insights into the economic, political, and cultural issues influencing the adoption of generic drug policies. Conclusions: Governments should apply coherent supply‐ and demand‐side policies in generic drug markets. An immediate priority is to convince more physicians, pharmacists, and patients that generic drugs are bioequivalent to branded products. Special‐interest groups continue to obstruct reform in Europe and the United States

    Greenland ice sheet surface mass loss: recent developments in observation and modeling

    Get PDF
    Surface processes currently dominate Greenland ice sheet (GrIS) mass loss. We review recent developments in the observation and modelling of GrIS surface mass balance (SMB), published after the July 2012 deadline for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Since IPCC AR5 our understanding of GrIS SMB has further improved, but new observational and model studies have also revealed that temporal and spatial variability of many processes are still poorly quantified and understood, e.g. bio-albedo, the formation of ice lenses and their impact on lateral meltwater transport, heterogeneous vertical meltwater transport (‘piping’), the impact of atmospheric circulation changes and mixed-phase clouds on the surface energy balance and the magnitude of turbulent heat exchange over rough ice surfaces. As a result, these processes are only schematically or not at all included in models that are currently used to assess and predict future GrIS surface mass loss

    Immunofluorometric quantitation and histochemical localisation of kallikrein 6 protein in ovarian cancer tissue: a new independent unfavourable prognostic biomarker

    Get PDF
    Human kallikrein 6 protein is a newly discovered human kallikrein. We determined the amount of human kallikrein 6 in extracts of 182 ovarian tumours and correlated specific activity (ng hK6 mg−1 total protein) with clinicopathological variables documented at the time of surgical excision and with outcome (progression free survival, overall survival) monitored over a median interval of 62 months. Thirty per cent of the tumours were positive for human kallikrein 6 (>35 ng hK6 mg−1 total protein). Human kallikrein 6-specific immunohistochemical staining of four ovarian tissues that included benign, borderline and malignant lesions indicated a cytoplasmic location of human kallikrein 6 in tumour cells of epithelial origin, although the intensity of staining was variable. Tumour human kallikrein 6 (ng hK6 mg−1 total protein) was higher in late stage disease, serous histotype, residual tumour >1 cm and suboptimal debulking (>1 cm) (P<0.05). Univariate analysis revealed that patients with tumour human kallikrein 6 positive specific activity were more likely to suffer progressive disease and to die (hazard ratio 1.71 (P=0.015) and 1.88 (P=0.022), respectively). Survival curves demonstrated the same (P=0.013 and 0.019, respectively). Multivariate analysis revealed that human kallikrein 6 positivity was retained as an independent prognostic variable in several subgroups of patients, namely those with (low) grade I and II tumours (hazard ratio progression free survival 4.3 (P=0.027) and overall survival 4.1 (P=0.023)) and those with optimal debulking (hazard ratio progression free survival 3.8 (P=0.019) and overall survival 5.6 (P=0.011)). We conclude that tumour kallikrein 6 protein levels have utility as an independent adverse prognostic marker in a subgroup of ovarian cancer patients with otherwise apparently good prognosis

    A depauperate immune repertoire precedes evolution of sociality in bees

    Get PDF
    Background Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. Results We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman’s principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. Conclusions The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts
    corecore