19 research outputs found

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys

    Seed characterization and early nitrogen metabolism performance of seedlings from Altiplano and coastal ecotypes of Quinoa

    Get PDF
    Background Early seed germination and a functional root system development during establishment are crucial attributes contributing to nutrient competence under marginal nutrient soil conditions. Chenopodium quinoa Willd (Chenopodiaceae) is a rustic crop, able to grow in marginal areas. Altiplano and Coastal/Lowlands are two representative zones of quinoa cultivation in South America with contrasting soil fertility and edaphoclimatic conditions. In the present work, we hypothesize that the ecotypes of Quinoa from Altiplano (landrace Socaire) and from Coastal/Lowland (landrace Faro) have developed differential adaptive responses in order to survive under conditions of low availability of N in their respective climatic zones of Altiplano and Lowlands. In order to understand intrinsic differences for N competence between landraces, seed metabolite profile and germinative capacity were studied. Additionally, in order to elucidate the mechanisms of N uptake and assimilation at limiting N conditions during establishment, germinated seeds of both landraces were grown at either sufficient nitrate (HN) or low nitrate (LN) supply. We studied the photosynthetic performance, protein storage, root morphometrical parameters, activity and expression of N-assimilating enzymes, and the expression of nitrate transporters of roots in plants submitted to the different treatments. Results Seeds from Socaire landrace presented higher content of free N-related metabolites and faster seed germination rate compared to Faro landrace. Seedlings of both ecotypes presented similar physiological performance at HN supply, but at LN supply their differences were exalted. At LN, Socaire plants showed an increased root biomass (including a higher number and total length of lateral roots), a differential regulation of a nitrate transporter (aNPF6.3-like homologue) belonging to the Low Affinity Transport System (LATS), and an upregulation of a nitrate transporter (aNRT2.1-like homologue) belonging to the High Affinity nitrate Transport System (HATS) compared to Faro. These responses as a whole could be linked to a higher amount of stored proteins in leaves, associated to an enhanced photochemical performance in Altiplano plants, in comparison to Lowland quinoa plants. Conclusions These differential characteristics of Socaire over Faro plants could involve an adaptation to enhanced nitrate uptake under the brutal unfavorable climate conditions of Altiplano

    Identification and Dynamic Regulation of microRNAs Involved in Salt Stress Responses in Functional Soybean Nodules by High-Throughput Sequencing

    Get PDF
    Both symbiosis between legumes and rhizobia and nitrogen fixation in functional nodules are dramatically affected by salt stress. Better understanding of the molecular mechanisms that regulate the salt tolerance of functional nodules is essential for genetic improvement of nitrogen fixation efficiency. microRNAs (miRNAs) have been implicated in stress responses in many plants and in symbiotic nitrogen fixation (SNF) in soybean. However, the dynamic regulation of miRNAs in functioning nodules during salt stress response remains unknown. We performed deep sequencing of miRNAs to understand the miRNA expression profile in normal or salt stressed-soybean mature nodules. We identified 110 known miRNAs belonging to 61 miRNA families and 128 novel miRNAs belonging to 64 miRNA families. Among them, 104 miRNAs were dramatically differentially expressed (>2-fold or detected only in one library) during salt stress. qRT-PCR analysis of eight miRNAs confirmed that these miRNAs were dynamically regulated in response to salt stress in functional soybean nodules. These data significantly increase the number of miRNAs known to be expressed in soybean nodules, and revealed for the first time a dynamic regulation of miRNAs during salt stress in functional nodules. The findings suggest great potential for miRNAs in functional soybean nodules during salt stress

    Biochemical and Molecular Inhibition of Plastidial Carbonic Anhydrase Reduces the Incorporation of Acetate into Lipids in Cotton Embryos and Tobacco Cell Suspensions and Leaves

    No full text
    Two cDNAs encoding functional carbonic anhydrase (CA) enzymes were recently isolated from a non-photosynthetic, cotyledon library of cotton (Gossypium hirsutum) seedlings with putative plastid-targeting sequences (GenBank accession nos. AF132854 and AF132855). Relative CA transcript abundance and enzyme activity increased 9 and 15 times, respectively, in cotton embryos during the maximum period of reserve oil accumulation. Specific sulfonamide inhibitors of CA activity significantly reduced the rate of [(14)C]acetate incorporation into total lipids in cotton embryos in vivo, and in embryo plastids in vitro, suggesting a role for CA in plastid lipid biosynthesis. CA inhibitors did not affect acetyl-coenzyme A carboxylase activity or total storage protein synthesis. Similar results were obtained for two other plant systems: cell suspensions (and isolated plastids therefrom) of tobacco (Nicotiana tabacum), and chloroplasts isolated from leaves of transgenic CA antisense-suppressed tobacco plants (5% of wild-type CA activity). In addition, tobacco cell suspensions treated with the CA inhibitor ethoxyzolamide showed a substantial loss of CO(2) compared with controls. The rate of [(14)C]acetate incorporation into lipid in cell suspensions was reduced by limiting external [CO(2)] (scrubbed air), and this rate was further reduced in the presence of ethoxyzolamide. Together, these results indicate that a reduction of CA activity (biochemical or molecular inhibition) impacts the rate of plant lipid biosynthesis from acetate, perhaps by impairing the ability of CA to efficiently “trap” inorganic carbon inside plastids for utilization by acetyl-coenzyme A carboxylase and the fatty acid synthesis machinery

    Plant hormones and seed germination

    No full text
    corecore