53 research outputs found

    A complete ancient RNA genome : identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus

    Get PDF
    The origins of many plant diseases appear to be recent and associated with the rise of domestication, the spread of agriculture or recent global movements of crops. Distinguishing between these possibilities is problematic because of the difficulty of determining rates of molecular evolution over short time frames. Heterochronous approaches using recent and historical samples show that plant viruses exhibit highly variable and often rapid rates of molecular evolution. The accuracy of estimated evolution rates and age of origin can be greatly improved with the inclusion of older molecular data from archaeological material. Here we present the first reconstruction of an archaeological RNA genome, which is of Barley Stripe Mosaic Virus (BSMV) isolated from barley grain ~750 years of age. Phylogenetic analysis of BSMV that includes this genome indicates the divergence of BSMV and its closest relative prior to this time, most likely around 2000 years ago. However, exclusion of the archaeological data results in an apparently much more recent origin of the virus that postdates even the archaeological sample. We conclude that this viral lineage originated in the Near East or North Africa, and spread to North America and East Asia with their hosts along historical trade routes

    Archaeogenetic evidence of ancient Nubian barley evolution from six to two-row indicates local adaptation

    Get PDF
    Background Archaeobotanical samples of barley (Hordeum vulgare L.) found at Qasr Ibrim display a two-row phenotype that is unique to the region of archaeological sites upriver of the first cataract of the Nile, characterised by the development of distinctive lateral bracts. The phenotype occurs throughout all strata at Qasr Ibrim, which range in age from 3000 to a few hundred years. Methodology and Findings We extracted ancient DNA from barley samples from the entire range of occupancy of the site, and studied the Vrs1 gene responsible for row number in extant barley. Surprisingly, we found a discord between the genotype and phenotype in all samples; all the barley had a genotype consistent with the six-row condition. These results indicate a six-row ancestry for the Qasr Ibrim barley, followed by a reassertion of the two-row condition. Modelling demonstrates that this sequence of evolutionary events requires a strong selection pressure. Conclusions The two-row phenotype at Qasr Ibrim is caused by a different mechanism to that in extant barley. The strength of selection required for this mechanism to prevail indicates that the barley became locally adapted in the region in response to a local selection pressure. The consistency of the genotype/phenotype discord over time supports a scenario of adoption of this barley type by successive cultures, rather than the importation of new barley varieties associated with individual cultures

    Inter-connection between land use/land cover change and herders’/farmers’ livestock feed resource management strategies: a case study from three Ethiopian eco-environments

    Get PDF
    AbstractWe assessed land use/land cover changes from remotely sensed satellite imagery and compared this with community perceptions on availability/use of livestock feed resources and feed deficit management strategies since the 1973s in three districts representing the pastoral, agro-pastoral and mixed crop-livestock eco-environments of Ethiopia. We found that land use/land cover changes are proceeding in all eco-environments and that transitions are from grasslands, and forest lands to bush/shrub lands and crop lands in the pastoral site (Liben), from bush/shrub lands and grasslands to crop lands in agro-pastoral site (Mieso) and from bush/shrub lands, forest lands and grasslands to crop lands in the mixed crop-livestock site (Tiyo). The changes significantly affected livestock feed resources and feed deficit management strategies available to households. Over the last 30–40 years, grazing resources available to livestock keepers have been declining with resultant increase in the contribution of crop residues and other feeds from crop lands (weeds and crop thinnings) as compared to feeds from grasslands. The feed deficit management strategies of households are also changing significantly from mobility to herd management and feed conservation in the pastoral areas; from mobility to feed conservation and purchasing of feed in the agro-pastoral areas and from transhumance to feed conservation and purchase of feed in the mixed crop-livestock areas. Hence feed resources and their availability vary with time and eco-environments indicating the need for the development of eco-environment/site specific feed management strategies in order to support productive stock in the study areas and similar eco-environments

    Application of tethered ruthenium catalysts to asymmetric hydrogenation of ketones, and the selective Hydrogenation of aldehydes

    Get PDF
    An improved method for the synthesis of tethered ruthenium(II) complexes of monosulfonylated diamines is described, together with their application to the hydrogenation of ketones and aldehydes. The complexes were applied directly, in their chloride form, to asymmetric ketone hydrogenation, to give products in excess of 99% ee in the best cases, using 30 bar of hydrogen at 60 °C, and to the selective reduction of aldehydes over other functional groups

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore