1,692 research outputs found

    Euclidean Wilson loops and Minimal Area Surfaces in Minkowski AdS3

    Full text link
    The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal area surfaces in AdS5xS5 space. If the Wilson loop is Euclidean and confined to a plane (t,x) then the dual surface is Euclidean and lives in Minkowski AdS3. In this paper we study such minimal area surfaces generalizing previous results obtained in the Euclidean case. Since the surfaces we consider have the topology of a disk, the holonomy of the flat current vanishes which is equivalent to the condition that a certain boundary Schroedinger equation has all its solutions anti-periodic. If the potential for that Schroedinger equation is found then reconstructing the surface and finding the area become simpler. In particular we write a formula for the Area in terms of the Schwarzian derivative of the contour. Finally an infinite parameter family of analytical solutions using Riemann Theta functions is described. In this case, both the area and the shape of the surface are given analytically and used to check the previous results.Comment: 45 pages, 4 figures, LaTe

    Hypervelocity stars in the Gaia era: Runaway B stars beyond the velocity limit of classical ejection mechanisms

    Full text link
    Young massive stars in the halo are assumed to be runaway stars from the Galactic disk. Possible ejection scenarios are binary supernova ejections (BSE) or dynamical ejections from star clusters (DE). Hypervelocity stars (HVSs) are extreme runaway stars that are potentially unbound from the Galaxy. Powerful acceleration mechanisms such as the tidal disruption of a binary system by a supermassive black hole (SMBH) are required to produce them. Therefore, HVSs are believed to originate in the Galactic center (GC), the only place known to host an SMBH. The second Gaia data release (DR2) offers the opportunity of studying HVSs in an unprecedented manner. We revisit some of the most interesting high-velocity stars, that is, 15 stars for which proper motions with the Hubble Space Telescope were obtained in the pre-Gaia era, to unravel their origin. By carrying out kinematic analyses based on revised spectrophotometric distances and proper motions from Gaia DR2, kinematic properties were obtained that help constrain the spatial origins of these stars. Stars that were previously considered (un)bound remain (un)bound in Galactic potentials favored by Gaia DR2 astrometry. For nine stars (five candidate HVSs plus all four radial velocity outliers), the GC can be ruled out as spatial origin at least at 2σ2\sigma confidence level, suggesting that a large portion of the known HVSs are disk runaway stars launched close to or beyond Galactic escape velocities. The fastest star in the sample, HVS3, is confirmed to originate in the Large Magellanic Cloud. Because the ejection velocities of five of our non-GC stars are close to or above the upper limits predicted for BSE and DE, another powerful dynamical ejection mechanism (e.g., involving massive perturbers such as intermediate-mass black holes) is likely to operate in addition to the three classical scenarios mentioned above.Comment: Accepted for publication in A&A (Astronomy and Astrophysics

    New and revised parameters for several southern OB binaries

    Full text link
    Using ESO FEROS archive spectra of several southern OB-type binaries, we derived periods for three SB2 spectroscopic binaries, HD 97166, HD 115455, and HD 123590, and two SB1 systems, HD 130298 and HD 163892. It was also possible to use new FEROS spectra to improve the parameters of the known binaries, KX Vel and HD 167263. For KX Vel, we determined a dynamic mass of the primary of 16.8 M⊙_{\odot}, while the evolutionary model suggests a higher value of 20.2 M⊙_{\odot}. We derived an improved period for HD 167263, and in its spectra, we recognized contributions of both of its interferometric components.Comment: 9 pages, A&A accepte

    Hypervelocity Stars in the Gaia era. Revisiting the most extreme stars from the MMT survey

    Full text link
    The hypervelocity star (HVS) survey conducted at the Multiple Mirror Telescope (MMT) identified 42 B-type stars in the Galactic halo whose radial velocity in the Galactic rest-frame exceeds +275 +275\,km \,s−1{}^{-1}. In order to unravel the nature and origin of those high-velocity outliers, their complete six-dimensional phase space information is needed. To this end, we complemented positions and proper motions from the second data release of {\it Gaia} with revised radial velocities and spectrophotometric distances that are based on a reanalysis of the available MMT spectra of 40 objects using state-of-the-art model spectra and a tailored analysis strategy. The resulting position and velocity vectors for 37 stars were then used as input for a subsequent kinematic investigation to obtain as complete a picture as possible. The combination of projected rotational velocity, position in the Kiel diagram, and kinematic properties suggests that all objects in the sample except two (B576, B598) are very likely to be main sequence stars. While the available data are still not precise enough to constrain the place of origin for 19 program stars, we identified eight objects that either come from the outer rim of the Galactic disk or not from the disk at all, along with ten that presumably stem from the Galactic disk. For almost all of those 18 targets with more or less well-constrained spatial origin, the Galactic center (GC) is disqualified as a possible place of origin. The most notable exception is B576, the origin of which coincides extremely well with the GC when assuming a blue horizontal branch (BHB) nature for it. HVS \,22 is by far the most extreme object in the sample. Although its origin is completely unconstrained, an ejection from the GC by the Hills mechanism is the most plausible explanation for its current Galactic rest-frame velocity of 1530−560+690 1530^{+690}_{-560}\,km \,s−1{}^{-1}
    • …
    corecore