258 research outputs found

    Mapping the molecular surface of the analgesic NaV1.7-selective peptide Pn3a reveals residues essential for membrane and channel interactions

    Get PDF
    Compelling human genetic studies have identified the voltage-gated sodium channel NaV1.7 as a promising therapeutic target for the treatment of pain. The analgesic spider venom-derived peptide ”theraphotoxin-Pn3a is an exceptionally potent and selective inhibitor of NaV1.7, however, little is known about the structure-activity relationships or channel interactions that define this activity. We rationally designed seventeen Pn3a analogues and determined their activity at hNaV1.7 using patchclamp electrophysiology. The positively charged amino acids K22 and K24 were identified as crucial for Pn3a activity, with molecular modeling identifying interactions of these residues with the S3-S4 loop of domain II of hNaV1.7. Removal of hydrophobic residues Y4, Y27 and W30 led to a loss of potency (>250-fold), while replacement of negatively charged D1 and D8 residues with a positively charged lysine led to increased potencies (>13-fold), likely through alterations in membrane lipid interactions. Mutating D8 to an asparagine led to the greatest improvement in Pn3a potency at NaV1.7 (20-fold), whilst maintaining >100-fold selectivity over the major off-targets NaV1.4, NaV1.5 and NaV1.6. The Pn3a[D8N] mutant retained analgesic activity in vivo, significantly attenuating mechanical allodynia in a clinically relevant mouse model of post-surgical pain at doses 3-fold lower than wild-type Pn3a, without causing motor adverse effects. Results from this study will facilitate future rational design of potent and selective peptidic NaV1.7 inhibitors for the development of more efficacious and safer analgesics but also to further investigate the involvement of NaV1.7 in pain

    Truncated glucagon-like peptide-1 and exendin-4 α-conotoxin pl14a peptide chimeras maintain potency and α-helicity and reveal interactions vital for cAMP signaling in vitro

    Get PDF
    Glucagon-like peptide-1 (GE P-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide alpha-conotoxin p114a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22-27) directing the binding of Phe' into a hydrophobic pocket on the GLP-1R

    Isolation and Structure-Activity of -Conotoxin TIIIA, A Potent Inhibitor of Tetrodotoxin-Sensitive Voltage-Gated Sodium Channels

    Get PDF
    ABSTRACT -Conotoxins are three-loop peptides produced by cone snails to inhibit voltage-gated sodium channels during prey capture. Using polymerase chain reaction techniques, we identified a gene sequence from the venom duct of Conus tulipa encoding a new -conotoxin-TIIIA (TIIIA). A 125 I-TIIIA binding assay was established to isolate native TIIIA from the crude venom of Conus striatus. The isolated peptide had three post-translational modifications, including two hydroxyproline residues and C-terminal amidation, and Ϝ35% homology to other -conotoxins. TIIIA potently displaced [ 3 H]saxitoxin and 125 I-TIIIA from rat brain (Na v 1.2) and skeletal muscle (Na v 1.4) membranes. Alanine and glutamine scans of TIIIA revealed several residues, including Arg14, that were critical for high-affinity binding to tetrodotoxin (TTX)-sensitive Na ϩ channels. We were surprised to find that [E15A]TIIIA had a 10-fold higher affinity than TIIIA for TTX-sensitive sodium channels (IC 50 , 15 vs. 148 pM at rat brain membrane). TIIIA was selective for Na v 1.2 and -1.4 over Na v 1.3, -1.5, -1.7, and -1.8 expressed in Xenopus laevis oocytes and had no effect on rat dorsal root ganglion neuron Na ϩ current

    Diagnostic Accuracy of HPV16 Early Antigen Serology For HPV-Driven Oropharyngeal Cancer is Independent of Age and Sex

    Get PDF
    Funding information: This project was funded in part by NIH/NIDCR R01 DE025712 (Paul Brennan, Brenda Diergaarde and Neil Hayes). The Alcohol-Related Cancers and Genetic Susceptibility Study in Europe (ARCAGE) was funded by the European Commission’s fifth framework program (QLK1-2001-00182), the Italian Association for Cancer Research, Compagnia di San Paolo/FIRMS, Region Piemonte and Padova University (CPDA057222). We thank Dr. Wolfgang Ahrens, PhD (UniversitĂ€t Bremen, Germany) for his support in ARCAGE study. The Carolina Head and Neck Cancer Epidemiology (CHANCE) study was supported in part by the National Cancer Institute (R01-CA90731). The Head and Neck 5000 study was a component of independent research funded by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research scheme (RP-PG-0707-10034). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. Core funding was also provided through awards from Above and Beyond, University Hospitals Bristol and Weston Research Capability Funding and the NIHR Senior Investigator award to Professor Andy Ness. Human papillomavirus (HPV) serology was supported by a Cancer Research UK Programme Grant, the Integrative Cancer Epidemiology Programme (grant number: C18281/A19169). The University of Pittsburgh head and neck cancer case-control study is supported by US National Institutes of Health grants P50CA097190 and P30CA047904. The MSH-PMH study was supported by Canadian Cancer Society Research Institute and Lusi Wong Programs at the Princess Margaret Hospital Foundation.Peer reviewedPublisher PD

    Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists

    Get PDF
    Type 2 diabetes mellitus (T2DM) results from compromised pancreatic beta-cell function, reduced insulin production, and lowered insulin sensitivity in target organs resulting in hyperglycemia. The GLP-1 hormone has two biologically active forms, GLP-1-(7-37) and GLP-1-(7-36)amide, which are equipotent at the glucagon-like peptide-1 receptor (GLP-1R). These peptides are central both to normal glucose metabolism and dysregulation in T2DM. Several structurally modified GLP-1 analogues are now approved drugs, and a number of other analogues are in clinical trials. None of these compounds is orally bioavailable and all require parenteral delivery. Recently, a number of smaller peptidomimetics containing 11-12 natural and unnatural amino acids have been identified that have similar insulin regulating profiles as GLP-1. The alpha-conotoxins are a class of disulfide rich peptide venoms isolated from cone snails, and are known for their highly constrained structures and resistance to enzymatic degradation. In this study, we examined whether 11-residue peptidomimetics incorporated into alpha-conotoxin scaffolds, forming monocyclic or bicyclic compounds constrained by disulfide bonds and/or backbone cyclization, could activate the GLP-1 receptor (GLP-1R). Several compounds showed potent (nanomolar) agonist activity at GLP-1R, as evaluated via cAMP signaling. In addition, HPLC retention times and in silica calculations suggested that mono- and bicyclic compounds had more favorable n-octanol/water partition coefficients according to the virtual partition coefficient model (vLogP), while maintaining a smaller radius of gyration compared to corresponding uncyclized peptidomimetics. Our findings suggest that cyclic peptidomimetics provide a potential avenue for future design of potent, compact ligands targeting GLP-1R and possessing improved physicochemical properties. (C) 2015 Elsevier Masson SAS. All rights reserved

    Semienzymatic cyclization of disulfide-rich peptides using sortase A

    Get PDF
    Background: Sortase A (SrtA) is a transpeptidase capable of catalyzing the formation of amide bonds. Results: SrtA was used to backbone-cyclize disulfide-rich peptides, including kalata B1, -conotoxin Vc1.1, and SFTI-1. Conclusion: SrtA-mediated cyclization is applicable to small disulfide-rich peptides. Significance: SrtA-mediated cyclization is an alternative to native chemical ligation for the cyclization of small peptides of therapeutic interest

    Neuronally selective micro-conotoxins from Conus striatus utilize an alpha-helical motif to target mammalian sodium channels

    Get PDF
    ÎŒ-Conotoxins are small peptide inhibitors of muscle and neuronal tetrodotoxin (TTX)-sensitive voltage-gated sodium channels (VGSCs). Here we report the isolation of ÎŒ-conotoxins SIIIA and SIIIB by 125I-TIIIA-guided fractionation of milked Conus striatus venom. SIIIA and SIIIB potently displaced 125I-TIIIA from native rat brain Nav1.2 (IC50 values 10 and 5 nM, respectively) and muscle Nav1.4 (IC50 values 60 and 3 nM, respectively) VGSCs, and both inhibited current through Xenopus oocyte-expressed Nav1.2 and Nav1.4. An alanine scan of SIIIA-(2–20), a pyroglutamate-truncated analogue with enhanced neuronal activity, revealed residues important for affinity and selectivity. Alanine replacement of the solvent-exposed Trp-12, Arg-14, His-16, Arg-18 resulted in large reductions in SIIIA-(2–20) affinity, with His-16 replacement affecting structure. In contrast, [D15A]SIIIA-(2–20) had significantly enhanced neuronal affinity (IC50 0.65 nM), while the double mutant [D15A/H16R]SIIIA-(2–20) showed greatest Nav1.2 versus 1.4 selectivity (136-fold). 1H NMR studies revealed that SIIIA adopted a single conformation in solution comprising a series of turns and anα-helical motif across residues 11–16 that is not found in larger ÎŒ-conotoxins. The structure of SIIIA provides a new structural template for the development of neuronally selective inhibitors of TTX-sensitive VGSCs based on the smaller ÎŒ-conotoxin pharmacophore

    The alpha(2)delta auxiliary subunit reduces affinity of omega-conotoxins for recombinant N-type (Ca(v)2.2) calcium channels

    Get PDF
    The omega-conotoxins from fish-hunting cone snails are potent inhibitors of voltage-gated calcium channels. The omega-conotoxins MVIIA and CVID are selective N-type calcium channel inhibitors with potential in the treatment of chronic pain. The beta and alpha(2)delta-1 auxiliary subunits influence the expression and characteristics of the alpha(1B) subunit of N-type channels and are differentially regulated in disease states, including pain. In this study, we examined the influence of these auxiliary subunits on the ability of the omega-conotoxins GVIA, MVIIA, CVID and analogues to inhibit peripheral and central forms of the rat N-type channels. Although the beta3 subunit had little influence on the on- and off-rates of omega-conotoxins, coexpression of alpha(2)delta with alpha(1B) significantly reduced on- rates and equilibrium inhibition at both the central and peripheral isoforms of the N-type channels. The alpha(2)delta also enhanced the selectivity of MVIIA, but not CVID, for the central isoform. Similar but less pronounced trends were also observed for N-type channels expressed in human embryonic kidney cells. The influence of alpha(2)delta was not affected by oocyte deglycosylation. The extent of recovery from the omega-conotoxin block was least for GVIA, intermediate for MVIIA, and almost complete for CVID. Application of a hyperpolarizing holding potential ( - 120 mV) did not significantly enhance the extent of CVID recovery. Interestingly, [R10K] MVIIA and [O10K] GVIA had greater recovery from the block, whereas [K10R] CVID had reduced recovery from the block, indicating that position 10 had an important influence on the extent of omega-conotoxin reversibility. Recovery from CVID block was reduced in the presence of alpha(2)delta in human embryonic kidney cells and in oocytes expressing alpha(1B-b). These results may have implications for the antinociceptive properties of omega-conotoxins, given that the alpha(2)delta subunit is up-regulated in certain pain states

    Identification of a novel class of nicotinic receptor antagonists - Dimeric conotoxins VxXIIA, VxXIIB, and VxXIIC from Conus vexillum

    Get PDF
    The venoms of predatory marine snails ( Conus spp.) contain diverse mixtures of peptide toxins with high potency and selectivity for a variety of voltage-gated and ligand-gated ion channels. Here we describe the chemical and functional characterization of three novel conotoxins, alpha D-VxXIIA, alpha D-VxXIIB, and alpha D-VxXIIC, purified from the venom of Conus vexillum. Each toxin was observed as an similar to 11-kDa protein by LC/MS, size exclusion chromatography, and SDS-PAGE. After reduction, the peptide sequences were determined by Edman degradation chemistry and tandem MS. Combining the sequence data together with LC/MS and NMR data revealed that in solution these toxins are pseudo-homodimers of paired 47-50-residue peptides. The toxin subunitsexhibited a novel arrangement of 10 conserved cystine residues, and additional post-translational modifications contributed heterogeneity to the proteins. Binding assays and two-electrode voltage clamp analyses showed that alpha D-VxXIIA, alpha D-VxXIIB, and alpha D-VxXIIC are potent inhibitors of nicotinic acetylcholine receptors (nAChRs) with selectivity for alpha 7 and alpha 2 containing neuronal nAChR subtypes. These dimeric conotoxins represent a fifth and highly divergent structural class of conotoxins targeting nAChRs

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
    • 

    corecore