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Abstract 

Compelling human genetic studies have identified the voltage-gated sodium channel NaV1.7 as a 

promising therapeutic target for the treatment of pain. The analgesic spider venom-derived peptide µ-

theraphotoxin-Pn3a is an exceptionally potent and selective inhibitor of NaV1.7, however, little is 

known about the structure-activity relationships or channel interactions that define this activity. We 

rationally designed seventeen Pn3a analogues and determined their activity at hNaV1.7 using patch-

clamp electrophysiology. The positively charged amino acids K22 and K24 were identified as crucial 

for Pn3a activity, with molecular modeling identifying interactions of these residues with the S3-S4 

loop of domain II of hNaV1.7. Removal of hydrophobic residues Y4, Y27 and W30 led to a loss of 

potency (>250-fold), while replacement of negatively charged D1 and D8 residues with a positively 

charged lysine led to increased potencies (>13-fold), likely through alterations in membrane lipid 

interactions. Mutating D8 to an asparagine led to the greatest improvement in Pn3a potency at NaV1.7 

(20-fold), whilst maintaining >100-fold selectivity over the major off-targets NaV1.4, NaV1.5 and 

NaV1.6. The Pn3a[D8N] mutant retained analgesic activity in vivo, significantly attenuating 

mechanical allodynia in a clinically relevant mouse model of post-surgical pain at doses 3-fold lower 

than wild-type Pn3a, without causing motor adverse effects. Results from this study will facilitate 

future rational design of potent and selective peptidic NaV1.7 inhibitors for the development of more 

efficacious and safer analgesics but also to further investigate the involvement of NaV1.7 in pain. 
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Pain remains a poorly treated condition with currently used analgesics often suffering from poor 

tolerability, abuse potential or lack of broad efficacy 1. The voltage-gated sodium channel isoform 

NaV1.7 is considered one of the most promising validated pain targets, with loss-of-function 

mutations leading to Congenital Insensitivity to Pain (CIP) 2, while gain-of-function mutations are 

associated with a range of painful conditions 3-5. As CIP is characterized by a lack of nociception, 

with no other significant autonomic or sensory impairments apart from anosmia 6, targeting NaV1.7 

pharmacologically promises to deliver effective analgesia without substantial side effects. 

Accordingly, intense research efforts have been devoted to the identification of subtype-selective 

NaV1.7 modulators 7, 8. Nevertheless, this endeavor has proven challenging, not least owing to the 

high degree of similarity of the NaV subtypes, especially in the pore domain where many clinically 

used NaV modulators bind 6.  

One particularly promising source of selective NaV modulators are animal venoms, which are 

typically dominated by small (~20–40 amino acids) peptides that target the voltage-sensing 

domains (VSDs) of NaV channels 9-11. Specifically, several spider venom-derived peptides target 

the VSDII to stabilize the “down” or resting/closed state of the channel, leading to a depolarizing 

shift in the voltage-dependence of channel activation 12, 13. Analogous to small molecules binding 

to VSDIV of NaV1.7 14, targeting the voltage-sensors of domain II imparts a typically greater 

degree of selectivity compared to targeting the pore domain, with many spider venom-derived 

peptides displaying excellent selectivity over tetrodotoxin (TTX)-resistant isoforms including the 

cardiac isoform NaV1.5, a major pharmacological off-target 6. However, selectivity for NaV1.7 

over the TTX-sensitive isoforms is often more limited, with few potent and truly selective 

molecules reported 15-17. These include the prototypical NaV1.7-targeting peptide toxin Protoxin-

II (ProTx-II or β/ω-theraphotoxin-Tp2a) from the venom of the tarantula Thrixopelma pruriens 
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18, rationally engineered analogues of Jingzhaotoxin-V (JzTx-V, β/κ-theraphotoxin-Cg2a) 19 and 

GpTx-1 (ω-theraphotoxin-Gr2a) 20, as well as the recently described analgesic peptide Pn3a (μ-

theraphotoxin-Pn3a) from the venom of the tarantula Pamphobeteus nigricolor 21, 22. Notably, 

these NaV1.7 inhibitors belong to diverse peptide families of NaV channel targeting spider-venom 

toxins (NaSpTx families 1-3), based on sequence similarities 17, 23. Extensive structure-activity 

studies have been described for NaSpTx family 3 peptides, which include JzTx-V and ProTx-II 

17, 19, 24, 25, as well as for NaSpTx family 1 peptides, which include GpTx-1 17, 20, 26. However, so 

far nothing is known about the structural features that confer activity at NaV1.7 for the NaSpTx 

family 2 peptides, to which Pn3a belongs. Pn3a is one of the most potent and selective reported 

NaV1.7 blockers and inhibits NaV1.7 with several hundred-fold selectivity over the key TTX-

sensitive off-targets NaV1.4 and NaV1.6, and is analgesic either alone or in combination with 

oxycodone or baclofen in multiple animal models of pain 21, 22. 

Thus, the goal of this study was to investigate the structure-activity relationships of Pn3a using 

rational analogue design to better understand the features necessary for potent inhibition of NaV1.7. 

We confirmed the importance of a key phenylalanine residue near the S3-S4 loop of NaV1.7 VSDII 

(F823) for peptide activity and identified several Pn3a amino acid residues crucial for potency, 

selectivity and membrane binding. Improved in vivo antinociceptive efficacy of Pn3a[D8N] was 

confirmed in a NaV1.7 target engagement assay as well as a mouse model of post-surgical pain. 

These results will guide future rational design of potent and selective NaV1.7 inhibitors as more 

efficacious and safer analgesics.  
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1. Results and Discussion 

1.1  F823 in VSDII of NaV1.7 is a key residue for interaction with Pn3a 

Pn3a is the only NaV1.7-selective inhibitor belonging to NaSpTx family 2 reported to date, with 

most other members of this family inhibiting voltage-gated potassium (KV) channels, or acting as 

functional NaV activators. Specifically, the most closely related NaSpTx family 2 NaV modulator 

SGTx1 (κ-theraphotoxin-Scg1a), sharing 22 identical residues and a very similar 3D backbone 

structure with Pn3a, is a non-selective NaV activator and KV2.1 inhibitor 27, 28 (Fig 1A). Similarly, 

the closely related family 2 peptides Hm1a and Hm1b (δ-theraphotoxin-Hm1a and δ-

theraphotoxin-Hm1b) selectively inhibit inactivation of NaV1.1 but have no effect on NaV1.7 29 

(Fig. 1A). In contrast, the pharmacologically most similar spider venom-derived peptide to Pn3a 

is ProTx-II, a selective NaSpTx family 3 NaV1.7 blocker with a well described pharmacophore 12, 

30, 31. However, ProTx-II has little sequence similarity to Pn3a (Fig. 1A), and although we have 

previously demonstrated that NaV1.7 inhibition by Pn3a involves binding to the S3-S4 loop of 

VSDII, we first sought to verify that Pn3a and ProTx-II share an overlapping binding site. ProTx-

II has previously been shown to bind to F823 (mNaV1.7; F813 hNaV1.7) in the S3-S4 loop of 

VSDII (ELFLADVEG), with a F823G mutation reducing ProTx-II inhibitory activity by 

between 9–100-fold 18, 32. This interaction was also confirmed by recent structural studies 12 which 

additionally suggest that besides Van der Waals interactions of F823 with hydrophobic ProTx-II 

residues, this NaV1.7-specific residue may be important for S3 helix stabilization as well as for S3-

S4 loop orientation in VSDII to provide a NaV1.7-specific receptor site. 

We therefore assessed the potency of Pn3a at a F823G mutant of NaV1.7 and found that, as 

expected, Pn3a was 28-fold less active at mutant (IC50 293.4 nM) compared to wild-type channels 

(IC50 10.4 nM) (Fig. 1B), suggesting an overlapping binding site of Pn3a and ProTx-II at VSDII. 
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1.2 Comparison of the primary and tertiary structure of Pn3a to spider venom-derived NaV 

modulators 

To identify amino acids that might confer NaV1.7 selective inhibition, we used a systematic 

approach based on aligning and comparing the primary (Fig. 1A) and tertiary structures of Pn3a 

with structurally closely related spider venom peptides (SGTx1, Hm1a and Hm1b) (Fig. 1C) as 

well as the pharmacologically similar ProTx-II (Fig. 1D), despite obvious differences in the 

sequences. Our sequence and structural alignments revealed several interesting commonalities and 

differences, including several charge substitutions in Pn3a compared to Hm1b and ProTx-II (D8, 

D12, E10, E13 and K24); as well as a structurally conserved arrangement of key hydrophobic 

residues (Y4, Y27, W30) (Fig. 1A and D). Thus, overall, Pn3a has a conserved amphipathic 

surface structure with a hydrophobic patch surrounded by charged residues (Fig. 1E), which is 

thought to permit membrane partitioning as well as interaction with parts of the VSDs located 

close to the extracellular surface 12, 33, 34. Therefore, to delineate the contributions of these residues 

to Pn3a activity, we next pharmacologically characterized select peptide analogues.  
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Figure 1. Sequence and structural features of Pn3a (A) Amino acid sequence alignment of Pn3a with 

closely related venom peptides κ-SGTx1, δ-Hm1a, δ-Hm1b and ProTx-II. Yellow shading indicates 

cysteines; dark grey and light grey shading represents identical and similar amino acids, respectively 

compared to Pn3a; red bold letters indicate residues included in SAR study; green letters indicate 

pharmacophore residues in ProTx-II for NaV1.7 activity 12, 30, 31. * indicates amidated C-terminus of Hm1b. 

(B) Pn3a is 28-fold more potent at wild-type mNaV1.7 (IC50 10.4 nM) compared to mNaV1.7[F823G] (IC50 

293.4 nM) mutant channels assessed by whole-cell patch-clamp experiments. Data are presented as 

mean ± SEM, with n = 5–9 cells per data point. (C) Comparison of NMR structures of Pn3a (PDB 5T4R; 

green) with Hm1a (PDB 2N6O; pink) superimposed over the disulfide bonds (yellow), generated with 

PyMol. Residues of interest are labelled and shown in stick-representation. (D) Comparison of NMR 

structures of Pn3a (PDB 5T4R; green) with ProTx-II (PDB 2N9T; cyan) superimposed over the disulfide 

bonds (yellow). Overlapping residues with similar chemical properties are labelled and shown as sticks. (E) 

Surface structure of Pn3a with acidic and basic residues highlighted in red and blue, respectively. The 

hydrophobic patch (including W30, Y4 and Y27) is surrounded by a charged ring (including D1, D8, K22 

and K24; left), while the reverse side is hydrophilic with mainly charged side chains (right). Only residues 

included in this SAR study are labelled. 
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1.3 The conserved hydrophobic patch of Pn3a contributes to activity and peptide folding 

Based on the observed overlap of Y4, Y27 and W30 in Pn3a with W7, W24 and W5, respectively, 

in ProTx-II (Fig. 1D), we first characterized the contribution of these hydrophobic patch residues 

to Pn3a activity. Mutations of all three residues to alanine resulted in at least 250-fold reduced 

potency at NaV1.7 (IC50 values > 1 µM) compared to Pn3a (IC50 4 nM) (Fig. 2A, Table 1), although 

the isolated predominant isomer obtained for Pn3a[Y27A] was in a non-native fold as determined 

by 1D NMR (Fig. S1). A similar contribution of this residue to folding of SGTx1 has previously 

been reported, with the SGTx1[Y27A] mutant lowering folding efficiency and preventing 

identification of correctly folded peptide 35. Interestingly, hydrophobic patch residues are also 

critical for potency of ProTx-II and appear to anchor the peptide in the membrane-embedded 

lipophilic cleft at the S2 and S3 interface just above F813 of VSDII in hNaV1.7 12, 31. These results 

suggest that Pn3a may employ a similar binding mode to ProTx-II with hydrophobic patch residues 

directly interacting with NaV1.7, and confirm Y4 and W30 as part of the pharmacophore and Y27 

as important structural feature for native folding of Pn3a. 

 

1.4 K22 and a basic residue at position 24 are essential for inhibition of NaV1.7 

R22 in ProTx-II is critical for its potency and has been shown to directly interact with acidic 

residues in the extracellular S3-S4 loop of NaV1.7 VSDII, antagonizing S4 gating-charge 

movement to prevent channel opening 12. Interestingly, K22 and K24 in Pn3a flank the 

corresponding position of R22 in ProTx-II and are located in close proximity, although neither 

directly overlap with this crucial pharmacophore residue (Fig. 1D). We therefore assessed activity 

of charge-neutral K22 and K24 analogues (K22A and K24A) as well as the corresponding arginine 
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mutants (K22R and K24R) and the negatively charged analogue (K24D) which additionally 

mirrors the sequence of the family 2 NaV activators SGTx1, Hm1a and Hm1b in this position (Fig. 

1A and C).  

As expected, both K24A (IC50 84 nM) and K22A (IC50 > 1 µM) lost activity at NaV1.7, although 

substitution of K24 appears better tolerated than replacement of K22, with 21-fold and > 250-fold 

loss of potency, respectively (Fig. 2B, Table 1). Similarly, substitution of K22 with arginine led 

to a 6-fold decrease in potency (IC50 24 nM), while K24R (IC50 1 nM) gained 4-fold potency 

compared to Pn3a, suggesting that the lysine at position 22 and a basic residue at position 24 in 

Pn3a are important for potent NaV1.7 channel inhibition (Fig. 2B, Table 1). The bulkier arginine 

at position 22 in Pn3a may be sterically unfavorable for channel engagement, while position 24 

seems more tolerant to modifications and NaV1.7 may better accommodate an arginine at position 

24 for more potent channel inhibition. 

Interestingly, the NaV activators SGTx1, Hm1a and Hm1b all contain an aspartic acid at position 

24 (Fig. 1A), suggesting this residue may be an important feature for the different pharmacological 

profiles. Indeed, consistent with a voltage-sensor trapping model involving electrostatic 

interactions between charged residues of toxins and the VSD, we hypothesized that the K24D 

substitution might impart NaV activator properties on Pn3a. However, while the Pn3a[K24D] 

analogue lost > 250-fold potency at NaV1.7 (IC50 > 1 µM) (Fig. 2B, Table 1), we neither observed 

increases in peak currents, hyperpolarizing shifts in the voltage-dependence of activation, or 

delayed inactivation at either NaV1.1 and NaV1.7 channels (Fig. S2). Given that effects on 

inactivation are typically mediated via interaction with the VSD of domain IV, while effects on 

activation are commonly mediated via VSDII interactions, it is perhaps not surprising that this 

single residue substitution did not convert Pn3a into a NaV activator, but only prevented potent 
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inhibition of channel activation. Further VSDIV interactions that would interfere with channel 

inactivation (similar to SGTx1, Hm1a and Hm1b effects) may require additional mutations to 

Pn3a. Nevertheless, our findings indicate that the presence of D24 in Hm1a/b and SGTx1 may 

prevent these peptides from being NaV channel blockers by preventing close interaction with acidic 

VSDII S3-S4 loop residues. Indeed, the D24A mutation in SGTx1 has been shown to result in a 

~20-fold reduction of the Kd value compared to wild-type peptide 35. Future studies are needed to 

investigate if a single amino acid exchange to a basic residue at position 24 can turn these NaV 

activators into blockers. 

 

Figure 2. Activity of Pn3a mutants at hNaV1.7 assessed by whole-cell patch-clamp experiments. (A) 

Potency of Pn3a (WT) and the surface hydrophobic patch analogues Y4A, Y27A and W30A. Note: Y27A 

is in a non-native fold. (B) Potency of analogues with mutations at position 22 and 24. (C) Potency of 

charged ring analogues D8G, D8K, D8N and D1K. (D) Potency of Pn3a analogues E10K, E13K, E13A, 

D12T and D14K. Note: D12T and D14K are in a non-native fold. Dotted line indicates maximal tested 

concentration of 1 µM. Dashed line indicates potency of wild-type Pn3a. Data are presented as 

mean ± SEM, with n = 3–9 cells per data point.  
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Table 1: Potency of Pn3a analogues at hNaV1.7. pIC50 (expressed as mean ± SEM) and IC50 values of 

Pn3a (WT) and Pn3a-analogues derived from concentration-response relationships assessed by whole-cell 

patch-clamp experiments. * = non-native fold assessed by 1D NMR; all other analogues showed a similar 

fold to WT peptide. 

Pn3a analogue pIC50 [M] IC50 [nM] 

WT 8.45 ± 0.04 4 

D1K 9.47 ± 0.08 0.3 

Y4A < 6 > 1000 

D8K 9.54 ± 0.06 0.3 

D8N 9.68 ± 0.07 0.2 

D8G 8.40 ± 0.06 4 

E10K 8.99 ± 0.16 1 

D12T * < 6 > 1000 

E13K 8.71 ± 0.05 2 

E13A 7.91 ± 0.10 12 

D14K * < 6 > 1000 

K22A < 6 > 1000 

K22R 7.62 ± 0.11 24 

K24A 7.08 ± 0.68 84 

K24D < 6 > 1000 

K24R 8.88 ± 0.06 1 

Y27A * < 6 > 1000 

W30A < 6 > 1000 

 

1.5 Removal of negative charges improves Pn3a potency 

Pn3a contains a number of negatively charged residues differentiating it from both the NaSpTx 

family 2 NaV activators as well as ProTx-II, including D1, D8, E10, D12, E13 and D14 (Fig. 1A). 

To explore the contributions of these residues to Pn3a activity, we generated a range of analogues 

based on charge neutralizing or charge reversing substitutions. Pn3a[D8G] – analogous to the 

corresponding residue in SGTx1, Hm1a and Hm1b – remained equipotent (IC50 4 nM) in patch-

clamp experiments. Surprisingly, D8N (IC50 0.2 nM) and D8K (IC50 0.3 nM) displayed a 20-fold 

and 13-fold improved potency at NaV1.7 compared to wild-type Pn3a, respectively (Fig. 2C, Table 

1). This suggests that a positive or polar-neutral residue at position 8 in Pn3a allows for better 

inhibition of the channel, possibly due to facilitation of direct NaV channel interactions or through 
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advantageous membrane binding properties. Similarly, the potency of Pn3a[D1K] (IC50 0.3 nM) 

was improved 13-fold (Fig. 2C, Table 1).  

The position corresponding to Pn3a E10 is occupied by a lysine residue in Hm1b, while E13 in 

Pn3a overlays well with the oppositely-charged K14 in ProTx-II and an alanine residue in Hm1b 

(Fig. 1A and D). We therefore also generated E10K, E13K and E13A Pn3a analogues. The nature 

of the residue at position 10 and 13 did not have a large impact on activity, as E10K (IC50 1 nM), 

E13K (IC50 2 nM) and E13A (IC50 12 nM) had only 4-fold and 2-fold improvement, and 3-fold 

decrease in potency at NaV1.7, respectively (Fig. 2D, Table 1).  

We also generated D12T and D14K based on similarity to Hm1a and ProTx-II, respectively, but 

found that these analogues did not adopt the native fold (Fig. S1) and were inactive at NaV1.7 up 

to 1 µM (Fig. 2D, Table 1). The NMR solution structure of Pn3a (PDB 5T4R) suggests a possible 

salt bridge between D12 and R23 as well as hydrogen bonds of D14 with the K11 side chain and 

the backbone amide hydrogens of E10 and K11 (Fig. S3), suggesting that the side chains of D12 

and D14 are important for the stability of the correct fold. This might explain the low synthetic 

folding yields of Hm1a and Hm1b, which required regioselective disulfide-bond formation to 

produce useful quantities 29. In contrast, Pn3a can be synthesized using a non-selective approach 

with reasonable yield. 

In summary, six mutations (D1K, D8N, D8K, E10K, E13K and K24R) were identified that resulted 

in improved potency at hNav1.7. Furthermore, four amino acids (Y4, K22, K24 and W30) were 

shown to be an important part of the pharmacophore of Pn3a for potent NaV1.7 inhibition and three 

residues (D12, D14 and Y27) were identified as important for folding of Pn3a into its native and 

active inhibitor cysteine knot (ICK) structure. 
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1.6 Selectivity of Pn3a analogues with improved potency at NaV1.7 

We next estimated the NaV1.1-1.8 selectivity of the Pn3a analogues with improved potency at 

NaV1.7 using a high-throughput fluorescence-based assay, to assess the impact of these mutations 

on the potency at other NaV channel isoforms. The rank order of selectivity for NaV1.7 (NaV1.7 > 

NaV1.2 > NaV1.1 > NaV1.4 > NaV1.3 > NaV1.8 ≥ NaV1.5 = NaV1.6) (see Table S1 for full 

selectivity values) was maintained for all analogues except E10K and E13K, which gained potency 

at NaV1.6 (Fig 3A, Table S1).  

In the peripheral nervous system, NaV1.6 expression is highly localized to the nodes of Ranvier, 

where it contributes to the saltatory conduction of action potentials on both myelinated sensory 

and motor neurons 36. This makes NaV1.6 a major off-target for peripherally restricted NaV channel 

blockers, as pharmacological inhibition of NaV1.6 will likely cause intolerable motor adverse 

effects 37, 38. We therefore assessed the potency of Pn3a analogues with improved potency at 

NaV1.7 at NaV1.6 using patch-clamp electrophysiology. Wild-type Pn3a inhibits NaV1.6 with an 

IC50 of 129 nM, making it at least 100-fold selective for NaV1.7 over NaV1.6 21. This selectivity 

window was maintained for D1K, D8N and K24R, which had NaV1.6 IC50 values of 102 nM, 25 

nM and 137 nM, respectively (Fig. 3B). D8K displayed an intermediate selectivity (34-fold) over 

NaV1.6 with an IC50 of 10 nM. Relative to NaV1.7, E10K and E13K gained the most potency at 

NaV1.6, with IC50 values of 12 nM and 30 nM, respectively, indicating that E10 and E13 residues 

are important in Pn3a for imparting selectivity over NaV1.6 (Fig. 3B). This suggests that residues 

on the hydrophilic face, opposite to the hydrophobic “active” surface, can change peptide 

pharmacodynamics and should not be disregarded when attempting to engineer potent and 

selective ICK peptides. The changes in selectivity for NaV1.6 determined using electrophysiology 
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matched those estimated from the fluorescence-based assays, validating this high-throughput 

approach as a method for estimating NaV selectivity.  

  

Figure 3: NaV1.1-1.8 selectivity of Pn3a analogues with improved potency at NaV1.7. (A) Potency at 

hNaV1.1-1.8 represented on a radar plot assessed using fluorescence-based assays with membrane potential 

dye. Data is presented as the pIC50 averaged from 3 independent replicates (each with 3 identical wells per 

treatment) (B) Comparative potency of select Pn3a analogues at hNaV1.6 and hNaV1.7 assessed by whole-

cell patch-clamp experiments. Numbers above bars indicate fold selectivity for NaV1.7 over NaV1.6. Dashed 

and dotted lines indicate potencies of wild-type Pn3a at NaV1.7 and NaV1.6, respectively (values for NaV1.6 

as previously reported 21). Data are presented as mean ± SEM; n = 4–7 cells). 

 

1.7 Pn3a analogues effectively engage NaV1.7 in vivo  

We next assessed NaV1.7 target engagement of Pn3a analogues following local and systemic 

administration using a previously validated mouse model of NaV1.7-mediated pain induced by 

intraplantar injection of the scorpion toxin OD1 39. E10K and E13K were not tested in vivo due to 

their small selectivity window over NaV1.6 (12–15-fold). Intraplantar injection of wild-type Pn3a 

(1 μM) partially reduced OD1-induced spontaneous pain behaviors (Control: 89 ± 6 flinches; Pn3a: 

42 ± 3 flinches; Fig. 4A), confirming NaV1.7 target engagement and inhibition at peripheral nerve 

terminals in vivo. At the same concentration, D1K, D8N, D8K, and K24R almost completely 

abolished OD1-induced pain behaviors, consistent with their increased potency at NaV1.7 in vitro 

(D1K: 2 ± 1 flinches; D8N: 6 ± 2 flinches; D8K: 2 ± 1 flinches; K24R: 15 ± 4 flinches; Fig. 4A). 
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We therefore next assessed systemic antinociceptive activity of the active Pn3a analogues. 

Following intraperitoneal injection, Pn3a D1K, D8N, D8K and K24 (1 mg/kg) all significantly 

attenuated OD1-induced pain behaviors (Control: 119 ± 7 flinches, Pn3a: 37 ± 7 flinches; D1K: 

28 ± 13 flinches; D8N: 6 ± 2 flinches; D8K: 21 ± 11 flinches; K24R: 74 ± 6 flinches; Fig. 4B), 

and D8N stood out as significantly more effective compared to Pn3a (P < 0.05, unpaired t-test).  

Despite being more potent than native Pn3a in vitro, K24R performed worse following systemic 

administration. A disconnection between in vitro potency and systemic in vivo efficacy is a 

common problem in the development of analgesic NaV1.7 blockers (including small molecules 

and peptides), suggesting insufficient free plasma concentration or inaccessibility of relevant 

receptor sites 6. Another possible explanation may be the modest shift of the voltage-dependence 

of activation by K24R, which only caused a Δ +11.0 mV (from -22.62 mV to -11.67 mV) shift 

compared with a 21.3 mV shift for Pn3a (Fig. S4). In summary, these results highlight D8N as the 

most potent Pn3a analogue in vivo after systemic administration and therefore a promising 

analgesic lead compound for further assessment.  
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Figure 4. Comparative efficacy of Pn3a and analogues in a mouse model of NaV1.7 mediated pain. (A) 

Local injection of Pn3a (WT) and analogues (i.pl. 1 μM) reverses spontaneous pain behaviors induced by 

intraplantar injection of the NaV1.7 activator OD1 in mice; n = 5–6 per group. (B) Systemic administration 

of Pn3a (WT) and analogues (i.p. 1 mg/kg) reverses spontaneous pain behaviors induced by intraplantar 

injection of the NaV1.7 activator OD1 in mice; n = 5–6 per group. Data are presented as mean ± SEM. 

Statistical significance was determined using one-way ANOVA with Dunnett’s post-test; *P < 0.05 

compared to control, #P < 0.05 compared to native Pn3a (WT).  

 

1.8 Pn3a[D8N] maintains selectivity for NaV1.7 and is a potent analgesic 

Since Pn3a[D8N] showed improved potency at NaV1.7 and was significantly more analgesic in 

vivo than wild-type Pn3a after systemic administration, we next sought to confirm selectivity over 

other NaV subtypes using patch-clamp electrophysiology. Pn3a[D8N] exhibited similarly 

increased potencies across all of the NaV subtypes when compared to native Pn3a, maintaining at 

least 100-fold selectivity over the major off-targets NaV1.4, NaV1.5 and NaV1.6 (Fig. 5A, Table 

2). This increase in potency correlates with an increase in lipid membrane interactions (see 

Supporting Information and Fig. S5 and Table S2) suggesting that the removal of the negatively 

charged D8 residue drives overall potency via improved membrane affinity rather than by direct 

channel interactions. Indeed, membrane affinity seems to play an important role in the activity of 

NaV blockers 40 and has been well studied for e.g. ProTx-II and HwTx-IV 31, 33. The mechanism of 
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NaV1.7 channel block by Pn3a[D8N] remained the same as for native Pn3a, with Pn3a[D8N] 

causing a large depolarizing shift in the voltage-dependence of activation (Δ +22.4 mV), consistent 

with overlapping VSDII interactions (Fig. 5B, C and S4). This closely matches the previously 

reported shift of Δ +21.3 mV of wild-type Pn3a 21 and further suggests that the D8N mutation does 

not change direct interactions of Pn3a with NaV1.7 channels. 

We next determined analgesic efficacy of systemic Pn3a[D8N] doses using the OD1 model. 

Intraperitoneal administration of Pn3a[D8N] dose-dependently reduced OD1-induced flinching, 

with 1 mg/kg almost completely abolishing all spontaneous pain behaviors (Control: 102 ± 3; D8N 

0.3 mg/kg: 105 ± 18; D8N 0.6 mg/kg: 34 ± 11; D8N 1 mg/kg: 6 ± 2; Fig. 4B and 5D). We therefore 

took this dose forward into a clinically relevant model of post-surgical pain, in which NaV1.7 

inhibition was previously shown to be analgesic 22. Pn3a[D8N] (1 mg/kg) significantly attenuated 

surgically induced mechanical allodynia (Control: 0.9 ± 0.1 g; Pn3a[D8N] 1 mg/kg: 2.5 ± 0.3 g), 

while native Pn3a at the same dose had no significant effect (Control: 0.9 ± 0.1 g; Pn3a 1 mg/kg: 

1.2 ± 0.3 g), consistent with Pn3a[D8N] being more potent than native Pn3a at NaV1.7 (Fig. 5E). 

Analgesic doses of Pn3a (3 mg/kg) and Pn3a[D8N] (1 mg/kg) had no significant motor adverse 

effect as measured with the parallel rod floor test (ataxia index; control: 4.6 ± 0.8; Pn3a, 7.0 ± 1.5; 

Pn3a[D8N]: 6.9 ± 1.3; P > 0.05, one-way ANOVA), confirming the analgesic effects were not due 

to motor impairment. Increasing the dose of Pn3a[D8N] to 3 mg/kg resulted in full reversal of 

mechanical allodynia with withdrawal thresholds indifferent from healthy mice (P > 0.05, one-

way ANOVA; Fig. 5E), while still not causing motor impairments (ataxia index: 4.9 ± 1.5; 

P > 0.05 vs control, one-way ANOVA). The anti-nociceptive activity of systemically administered 

Pn3a[D8N] (3 mg/kg, i.p.) persisted for at least 1 h (Fig. 5F), consistent with an expected short 

half-life due to rapid renal clearance that is typical for small globular peptides 41, 42. 
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Figure 5. Pharmacological characterization of Pn3a[D8N] with improved potency at NaV1.7 (A) 

Comparative potency of [D8N]Pn3a at hNaV1.1-1.8 assessed by whole-cell patch-clamp experiments. 

[D8N]Pn3a most potently inhibited NaV1.7 (IC50 0.21 nM), with >40-fold selectivity over NaV1.1 and 

NaV1.2, >100-fold selectivity over NaV1.3, NaV1.4 and NaV1.6, and >1000-fold selectivity over NaV1.5 and 

NaV1.8. (B) Current-voltage (IV) relationship before and after addition of Pn3a[D8N] (100 nM) at NaV1.7. 

(C) Conductance-voltage (GV) relationship before and after addition of Pn3a[D8N] (100 nM) at NaV1.7. 

Pn3a[D8N] shifted the voltage-dependence of activation by +22.4 mV. Data are presented as mean ± SEM, 

with n = 3–7 cells per data point. (D) Pn3a[D8N] (i.p.) dose-dependently reversed spontaneous pain 

behaviors induced by intraplantar injection of the NaV1.7 activator OD1 in mice; n = 5–6 per group. Dotted 

line represents pain behaviors after i.p. injection of 1 mg/kg D8N. (E) Comparative efficacy of Pn3a (1 and 

3 mg/kg i.p.) and Pn3a[D8N] (1 and 3 mg/kg i.p) on postsurgical pain-induced mechanical allodynia in 

mice; n = 5–6 per group. Dotted line represents mechanical thresholds of naïve mice. (F) Time course of 

reversal of postsurgical pain-induced mechanical allodynia by Pn3a[D8N] (3 mg/kg i.p.); n = 5 per group. 

Data are presented as mean ± SEM. Statistical significance was determined using one-way or two-way 

ANOVA with Dunnett’s post-test as appropriate; *P < 0.05 compared to control. 
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Table 2: Pn3a[D8N] and Pn3a potency at NaV1.1-1.8 and selectivity for NaV1.7. Data is presented as 

mean IC50 assessed by whole-cell patch-clamp experiments. Values for wild-type Pn3a as previously 

reported 21. The fold selectivity for NaV1.7 over each other isoform was calculated as IC50 (NaV1.X)/IC50 

(NaV1.7) 

 Pn3a[D8N] Pn3a 
NaV 

subtype 

IC50 

[nM] 

NaV1.7 

selectivity 

IC50 

[nM] 
NaV1.7 

selectivity 
1.1 14 67 37 41 
1.2 9 43 124 138 
1.3 48 229 210 233 
1.4 97 462 144 160 
1.5 343 1633 800 889 
1.6 25 119 129 143 
1.7 0.21 1 0.9 1 
1.8 >1000 >4762 >1000 >1111 

 

1.9 Molecular model of the interaction between Pn3a and NaV1.7 VSDII in the “down” state 

Recent advances in cryo-EM technology have made it possible to obtain high resolution structures 

of human NaV1.7 channels or chimeric hNaV1.7(VSDII)-NaVAb channels in complex with gating-

modifier toxins bound to the voltage-sensing domains of the channel 12, 43. Particularly interesting 

was the high-resolution visualization of ProTx-II bound to VSDII in the putative down/closed 

state, the state that is preferentially bound and blocked by gating modifying channel inhibitors like 

Pn3a 12. Since the binding site of Pn3a overlaps with ProTx-II (Fig. 1B) and Pn3a shows several 

similarities in its pharmacophore compared to ProTx-II (Fig. 1D), we used this cryo-EM structure 

to model the binding of Pn3a to the “down” state of VSDII of the hNaV1.7/NaVAB chimera (Fig. 

6A). Our model is consistent with experimentally obtained data described in previous sections and 

places both basic residues K22 and K24 in Pn3a in close proximity of D816 and E818, respectively, 

where they likely form ionic and/or hydrogen bonds with these negatively charged S3-S4 loop 

residues (Fig. 6B). These interactions would likely interfere with S4 gating charge movement by 

neutralizing necessary acidic side chains or even by repulsing forces of these positive charges, to 
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interfere with channel opening. Consistent with our experimental data showing a slight loss of 

activity for K22R, this model also suggests that the bulkier and slightly longer arginine may clash 

with the D816 residue, while an arginine at position 24 would permit closer engagement with 

E818. Future studies systematically exploring a variety of amino acids, including unnatural amino 

acids like homo- and nor-arginines, or channel mutagenesis, may provide additional experimental 

evidence supporting this explanation for the observed pharmacological activity of the K22R and 

K24R analogues. 

Furthermore, modeling of Pn3a to the VSDII of NaV1.7 suggest that the side chains of the 

hydrophobic residues M5, F6, Y27, W30 and F34 in Pn3a are embedded in the membrane, with 

possible interactions between M5, F6 and W30 in Pn3a and the NaV1.7 specific F813 side chain, 

supporting the idea that direct channel interactions contribute to the loss of potency we observed 

in vitro in the corresponding NaV1.7 mutant (Fig. 6A). Interestingly, ProTx-II shows only slight 

interaction with F813 12, however, this residue seems crucial for stabilization of the S3 helix which 

in turn orients the S3-S4 loop residues to permit close interactions with ProTx-II. In comparison, 

the glycine residue in NaV1.5 (corresponding to F813 in hNaV1.7) seems to result in a less polar 

surface in the S3-S4 loop binding region, providing an explanation for ProTx-II having lower 

affinity for NaV1.5 12. W24 in ProTx-II is one of the few residues making intimate contacts with 

NaV1.7 12 and the molecular models suggest that Pn3a M25 and Y27 play a similar role, making 

hydrophobic contacts with the receptor L770 and L812 and the side chain Y27 establishing a 

hydrogen bond with the backbone carbonyl of L812. Additionally, our model indicates 

hydrophobic contacts between VSDII L814 and Pn3a W30 and F34 (Fig. 6A). The side chain of 

Pn3a W30 therefore potentially interacts with the first two residues of the S3-S4 segments as well 

as the membrane, and this central role is supported by the loss of inhibition measured 
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experimentally when W30 is mutated to alanine (Table 1). Future studies on further NaV1.7 mutant 

channels including D816, E818, L770, L812 and L814 mutants will be necessary to confirm the 

roles of these residues in Pn3a activity at NaV1.7. Similarly, mutagenesis experiments to introduce 

NaV1.7-like residues into other NaV1.X channels could be used to confirm importance of 

individual channel residues in potency and selectivity of Pn3a. 

According to the model, D8 is positioned over the head groups of the lipid membrane, which 

presumably contains negatively charged moieties 44, 45. Our data suggests that a negative charge at 

position 8 is poorly tolerated near the lipid headgroups, whereas an uncharged polar residue or a 

basic residue with a long sidechain is preferred and indeed this aligns with our experimental 

findings that D8N and D8K show improved membrane binding properties and an increased 

potency at NaV1.7 (Fig. 6C and S5). Similarly, the negative aspartic acid at position 1 of the 

flexible N-terminus may be affected by repulsive long range electrostatic interactions of negative 

charges within the membrane, while the N-terminal lysine of D1K would experience attractive 

long range electrostatic effects resulting in higher affinity to the channel-membrane complex as 

confirmed by the improved potency of D1K at NaV1.7. 

 

 

Figure 6: Molecular model of the interaction between Pn3a and NaV1.7 VSDII “down” state. (A) Two 

cross-membrane views (180 degrees rotated) of the interaction between the VSDII of Nav1.7 (green) and 

Pn3a (blue). The position of the lipid bilayer is indicated in olive. (B) View parallel to the membrane 
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showing the interaction of K22 and K24 with counter charges D816 and E818 in the S3-S4 segment. Only 

the side chains of selected residues are represented as sticks to increase readability. Hydrogen-bonds that 

are discussed in the text are indicated by dashed lines. The VSDII is made of four α-helices noted S1 to S4. 

The molecular models were generated by homology using three templates: the cryo-EM structure of 

hNav1.7 VSDII-NaVAB chimera in complex with ProTx-II (PDB 6n4r), the cryo-EM structure of hNav1.7 

(PDB 6j8h) and the NMR solution structure of Pn3a (PDB 5t4r). 

 

In summary, our structure-activity-relationship study of the family 2 peptide Pn3a identifies 

residues necessary for potent and selective inhibition of NaV1.7. Despite limited sequence 

similarity to ProTx-II, Pn3a binds to an overlapping site on VSDII, with the large interaction 

surface of the peptide seeming to drive selectivity over other NaV subtypes. The Pn3a analogue 

Pn3a[D8N] was more potent in vitro and also displayed more potent analgesic activity in vivo in a 

target engagement model as well as a model of post-surgical pain.   
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2. Materials and Methods 

2.1 Sequence alignment of Pn3a 

Amino acid sequences of peptides were aligned using clustal omega and the UniProtKB database 

(http://www.uniprot.org/; entry IDs: Pn3a: P0DM12; SGTx1: P56855; Hm1a: P60992; Hm1b: 

P0DOC5; ProTx-II: P83476) and manually corrected for cysteine spacing. 

2.2 Structural alignment of Pn3a 

The 2D NMR solution structures of Pn3a (PDB 5T4R) 21 and Hm1a (PDB 2N6O)29 or ProTx-II 

(PDB 2N9T) 31 were superimposed over the disulfide bonds, using the molecular graphics program 

PyMol. 

2.3 Solid-phase peptide synthesis of Pn3a and Pn3a-analogues 

Pn3a and analogues were synthesized using solid-phase peptide synthesis as described previously 

22. Briefly, synthesis was performed on a Symphony automated peptide synthesizer (Gyros Protein 

Technologies, Inc, Tucson, AZ), using Fmoc protocols. Peptides were released from the 

polystyrene resin and simultaneously deprotected, precipitated with ice-cold di-ethyl ether and 

HPLC purified. The linear peptides were folded in oxidation buffer containing a mix of oxidized 

and reduced glutathione for 48 h and then HPLC purified to obtain the final folded peptide 

products. The peptides were analyzed via electrospray ionization mass spectrometry using an 

API2000 system (Applied Biosystems, Foster City, CA, USA) to confirm matching calculated and 

measured masses (Table S3) and via analytical RP-HPLC using a Hypersil GOLD C18 column 

(2.1 × 100 mm, particle size 3 µm; Thermo Fisher Scientific, Waltham, MA, USA) on a Shimadzu 

LC20AT (Shimadzu Corporation, Kyoto, Japan) to confirm elution of clean, symmetrical peaks 

http://www.uniprot.org/
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(Fig. S6). The peptides were further analyzed for proper folding via 1D NMR (Fig. S1) and 

quantified using a Nanodrop spectrophotometer (Thermo Fisher Scientific, Scoresby, Australia). 

2.4 NMR spectroscopy 

To ensure that the Pn3a analogues displayed the same overall fold as native Pn3a, we performed 

one-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy on a Bruker Avance III 700 

MHz NMR spectrometer equipped with a cryo-probe 46. The samples were prepared at a 

concentration of 50 µM and dissolved in 95% H2O/5% deuterium oxide (D2O). To process the 

spectra, TopSpin 3.5 (Bruker) was used.  Agreement of resonance positions in the NH region of 

Pn3a-analogues compared to that of the native (and biologically active) Pn3a were used to assess 

folding. 

2.5 Generation of [F823G]NaV1.7 plasmid 

The QuikChange II XL kit (Agilent Technologies, Santa Clara, CA, USA) was used for site-

directed mutagenesis on murine Scn9a (encoding mNaV1.7) containing plasmids (GenScript, 

Piscataway, NJ, USA; Accession number NM_001290674, transcript variant 1) according to the 

manufacturer’s instructions to introduce a F823G mutation, equivalent to F813 in hNaV1.7. The 

vector used was pcDNA3.1-Hygro(+) including CMV and SV40 promoters for mammalian 

expression and a Hygromycin B resistance gene. PCR and Sanger sequencing of the whole open-

reading frame was performed to confirm presence of desired and absence of unwanted mutations. 

2.6 Cell culture 

Human embryonic kidney 293 (HEK293) cell lines stably expressing human NaV1.1-NaV1.8 

channels (SB Drug Discovery, Glasgow, UK) were cultured in minimal essential medium eagle 

(MEM; Sigma-Aldrich; Castle Hill, NSW) containing 10% (v/v) fetal bovine serum (FBS; Assay 
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Matrix Pty Ltd), 2 mM L-glutamine and selection antibiotics as recommended by the 

manufacturer. Chinese hamster ovary (CHO) cells stably expressing human NaV1.8 in a 

tetracycline-inducible system (ChanTest, Cleveland, OH) were cultured in Ham’s F-12 containing 

10% (v/v) FBS and selection antibiotics as recommended by the manufacturer and hNaV1.8 

expression was induced by the addition of tetracycline (1 μg/ml) for 24 h at 27 °C. HEK293 cells 

stably expressing mNaV1.7 or [F823G]mNaV1.7 were generated by transfection with 

Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA, USA) using 20 µg plasmid DNA 

and 30 µL Lipofectamine 3000, and selection of stable clonal cell lines with robust NaV currents 

using hygromycin B (100 μg/mL). Cells were grown in an incubator at 37 °C with 5% CO2 and 

passaged every 3–4 days (at 70–80% confluency) using TrypLE Express (Thermo Fisher 

Scientific).  

2.7 Whole-cell patch-clamp electrophysiology 

To pharmacologically characterize Pn3a analogues, whole-cell voltage-clamp electrophysiology 

assays were performed on NaV1.1-NaV1.7 expressing HEK293 cells and NaV1.8 expresing CHO 

cells using the automated electrophysiology platform QPatch-16X (Sophion Bioscience, Ballerup, 

Denmark) as previously described 47.  

The extracellular solution contained in mM: NaCl 70 (140 mM for NaV1.1-1.3, NaV1.6 and 

mNaV1.7/F823G), choline chloride 70 (0 mM for NaV1.1-1.3, NaV1.6 and mNaV1.7/F823G), KCl 

4, CaCl2 2, MgCl2 1, HEPES 10 and glucose 10; pH 7.4; osmolarity 305 mOsm. The intracellular 

solution contained in mM: CsF 140, EGTA 1 CsOH 5, HEPES 10 and NaCl 10; pH 7.3 (adjusted 

with CsOH); osmolarity 320 mOsm. Pn3a analogues were diluted in extracellular solution 

containing 0.05% bovine serum albumin (BSA). All compound effects were compared to solvent 

controls following 5 min of incubation. 
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Concentration-response curves were obtained by measuring the inhibition of peak current (I/Imax) 

elicited by a 20 ms test pulse of –20 mV from a holding potential of –90 mV (at 0.05 Hz frequency), 

using increasing peptide concentrations (each incubated for 5 min after addition). To calculate IC50 

values, a four-parameter Hill equation with variable Hill slope was fitted to the data using 

GraphPad Prism v7.00 (San Diego, CA, USA). Current–voltage (I-V) curves were generated 

before and after addition of peptide from a holding potential of –90 mV with a step pulse series 

(500 ms each, 5 mV increments), ranging from –110 mV to +55 mV. Conductance (G) at each 

voltage (V) was calculated with the equation G = I/(V–Vrev), (with Vrev = reversal potential) to 

obtain the conductance-voltage curves which were fitted with a Boltzmann equation with 

GraphPad Prism v7.00. Data are presented as the mean ± standard error of the mean (SEM). 

2.8 Fluorescence imaging plate reader (FLIPR) membrane potential assay 

To assess the concentration-response relationship and NaV-isoform selectivity of Pn3a-analogues 

on human NaV1.1-NaV1.8 channel isoforms, fluorescence imaging plate reader (FLIPR) membrane 

potential assays were performed on a FLIPRTETRA cellular screening system (Molecular Devices, 

Sunnyvale, CA, USA) as previously described 47. Freshly dissociated cells were seeded into clear-

bottom black-walled 384-well imaging plates (Corning, NY, USA) at a density of ~10,000 

cells/well. Growth media was removed from the wells after 48 h and the adherent, confluent cells 

loaded with 20 μL/well red membrane potential dye (Molecular Devices) diluted in physiological 

salt solution (PSS) for 30 min at 37 °C, 5% CO2. PSS contained in mM: NaCl 140, glucose 11.5, 

KCl 5.9, MgCl2 1.4, NaH2PO4 1.2, NaHCO3 5, CaCl2 1.8 and HEPES 10; adjusted to pH 7.4. Pn3a-

analogues were diluted in PSS containing 0.1% BSA and added to the NaV channel expressing 

HEK293 cells using the FLIPRTETRA. Cells were incubated for 5 min with peptides prior to addition 

of 20 µM veratridine (NaV1.6), 60 µM veratridine (NaV1.1-1.5 and 1.7) or 150 µM deltamethrin 
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(NaV1.8) for NaV channel stimulation. Changes in fluorescence intensity (excitation 515–545 nm; 

emission 565–625 nm), equivalent to changes in membrane potential, were measured with a cooled 

CCD camera. Reads were taken every 1 s for 10 s before (baseline values), 300 s after peptide 

addition and a further 300 s after addition of NaV channel activators. PSS containing 0.1% BSA 

was used as a negative control.  

Raw fluorescence values were converted to response over baseline values and a negative control 

correction was performed using the FLIPRTETRA software ScreenWorks 3.2.0.14 (Molecular 

Devices). The computed area under the curve (AUC) values over 300 s after activator addition 

were plotted and inhibitory peptide effects analyzed using GraphPad Prism v7.00. To calculate 

IC50 values, a four-parameter Hill equation with variable Hill slope was fitted to the data. All 

experiments were performed in triplicate for each treatment (three wells per condition) and the 

assay was performed on at least three separate occasions. 

2.9 Analgesic efficacy of Pn3a and analogues in vivo 

All in vivo experiments in mice were performed in accordance with the International Association 

for the Study of Pain Guidelines for the Use of Animals in Research and the Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes, 8th edition (2013). Ethical 

approval for experiments involving animals was obtained from the University of Queensland 

animal ethics committee. The behavioral experiments were conducted using male C57BL/6J mice 

(aged 6–9 weeks; sourced from Animal Resources Centre, WA, Australia), housed in groups of 3–

4 per cage under 12 h light-dark cycles, with access to standard rodent chow and water ad libitum. 

A blinded observer (unaware of the treatment received by each animal) performed all 

measurements. 
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To determine in vivo target engagement, efficacy was assessed in the mouse model of OD1-

induced spontaneous pain as previously described 39. For local treatments, vehicle (0.1% BSA in 

saline) or Pn3a-analogues (1 µM) were co-administered with the α-scorpion toxin OD1 (300 nM) 

via shallow subdermal intraplantar (i.pl.) injection (40 µL) into the right hind paw. For systemic 

treatments, vehicle or peptides were administered via intraperitoneal (i.p.) injection (10 µL/g; 0.3–

3 mg/kg) 10 min before injection of OD1 (300 nM; 40 µL i.pl.). After injection of OD1, mice were 

transferred to transparent enclosures and videotaped for up to 30 min from below. Spontaneous 

nocifensive behaviors including licking, shaking, lifting or flinching of the injected paw was 

counted by a blinded observer from the video recordings. All data are expressed as mean ± SEM. 

Statistical significance compared to vehicle controls was determined in GraphPad Prism v7.00 

using one-way ANOVA with Dunnett’s multiple comparison test. 

An in vivo mouse model of post-surgical pain was used to assess the analgesic activity of Pn3a and 

Pn3a[D8N] as described previously 22. Briefly, during anesthesia, an incision was made through 

the plantar skin, fascia and underlying flexor digitorum brevis muscle of the right hind paw. To 

simulate tissue retraction, the muscle was carefully elevated, leaving muscle origin and insertion 

intact. The wound was closed after hemostasis with two simple interrupted sutures and treated with 

5% povidone-iodine solution. The mice were allowed to recover in their home cages until 

behavioral experiments. After 24 h of recovery, mice were systemically treated with vehicle (0.1% 

BSA in saline) or peptides, administered via i.p. injection (10 µL/g; 1–3 mg/kg) 10 min before 

measurement of mechanical allodynia. Paw withdrawal thresholds to mechanical stimulation were 

determined 24 h post-surgery using an electronic von Frey apparatus (Mouse-Met Electronic von 

Frey, Topcat Metrology Ltd, Little Downham, United Kingdom) as previously described 22. 
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2.10 In vivo locomotor performance test 

Motor impairment 20 min after peptide administration was measured using the Parallel Rod Floor 

apparatus (Stoelting Co,Wood Dale, IL) and data analyzed using the ANY-Maze software 

(Stoelting Co) as described previously 39. The number of foot slips within one minute was divided 

by the distance travelled to obtain the ataxia index. 

2.11 Molecular docking of Pn3a at hNaV1.7 

A molecular model of the interaction between Pn3a and NaV1.7 VSDII was proposed by 

comparative modeling computed using Modeller 9v20 48and as templates the NMR solution 

structure of Pn3a (PDB 5T4R 21), the cryo-EM structure of the hNaV1.7 (in complex with 

Huwentoxin-IV; PDB 6J8H; resolution 3.2 A 43) and the cryo-EM structure of hNaV1.7-

VSDII/NaVAB chimera in complex with ProTx-II (PDB 6N4R 12). The six Cα of the cysteine 

residues of experimental structure of Pn3a and ProTx-II align with 0.5 A root-mean-square 

deviation, indicating the scaffold of these two peptides are highly similar. Beside the cysteine 

framework, the conformation of the loops 1 and 3 of Pn3a and ProTx-II are similar and were used 

as anchor point to dock Pn3a on NaV1.7 VSDII using the homology modelling approach. A 

hundred models were built using Modeller, and the model displaying the lowest DOPE score 49 

was selected and then energy minimized using Amber 18 and the FF14SB force field 50. The 

Molprobity 50 score of the tmodels is 1.36 (98th percentile), suggesting that it has very good quality. 

2.12 Statistical analysis 

Data and statistical analysis was performed using GraphPad Prism v7.00 (San Diego, CA, USA). 

Statistical significance was determined as a p-value < 0.05 (with *p < 0.05; **p < 0.01; ***p < 

0.001; ****p < 0.0001) and was calculated using unpaired t-tests (two-tailed), one-way analysis 
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of variance (ANOVA) with either Tukey’s multiple comparison test or Dunnett’s multiple 

comparison test or two-way ANOVA with Sidak’s multiple comparison test as appropriate, unless 

otherwise stated. Data are presented as the mean ± standard error of the mean (SEM) of at least 

three individual measurements. 
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Supplementary materials and methods (surface plasmon resonance); supplementary results and 
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Mapping the molecular surface of the analgesic NaV1.7-selective peptide Pn3a reveals 

residues essential for membrane and channel interactions 
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The molecular surface of the analgesic tarantual venom peptide Pn3a shows pharmacophore 

residues crucial for potent NaV1.7 inhibition (red) as well as residues important for proper folding 

(blue) and positions suitable for modification to achieve improved potency and analgesic activity 

(green). In vitro and in vivo pharmacology was used to obtain information on structure-activity 

relationships. A Pn3a-analogue with improved potency was discovered, which displays superior 

analgesic efficacy in in vivo pain models. 

 


